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S1   IMPLEMENTATION DETAILS 
Data collection and fusion. We collected the microbial genome data from NCBI (ftp://ftp.ncbi.nih.gov/genomes/) directories Bacteria and 
ASSEMBLY_BACTERIA on October 2014 and kept 2,071 high-quality genomes (≥0.95 according to Land et al., 2014) covered by 
eggNOG v4 (Powell et al., 2013). GO was downloaded from Uniprot-GOA database (Camon et al., 2005) from December, 2013. Databases 
were fused on gene level using gene ID cross-references (Huang et al., 2011). Where genes could not be assigned to OGs, their sequences 
were searched against eggNOG 4 database (eggnogv4.proteins.core_periphery.fa.gz) using the Lambda v0.4.7 (Hauswedell et al., 2014) local 
aligner tool in blastp mode with an e-value threshold of 10-5. A gene was assigned to the lowest e-value OG with percentage identity ≥90% 
and with alignment coverage  ≥90% of both the query and the database sequence. 

Data sets construction. Starting from the genomic data, five data sets were constructed, which were composed of the same set of 
instances that represent OGs occurring in ≥20 genomes, but with distinct sets of features (Fig. S1): 

 

 
Fig. S1. A schematic overview of the five genome-based representations used for gene function prediction in this work. 

 

Biophysical and protein sequence properties. BPS features can be divided into six categories (Ofer and Linial, 2015): biophysical 
quantitative properties (e.g., sequence length, molecular weight, net charge at various pH), word-based features (e.g., single and di-peptide 
amino acid composition, overlapping K-mers), local potential features (potential post-translational modification sites, potential disorder), 
information-based statistics (e.g., total entropy per letter, binary autocorrelation), amino acids scales-based features (amino acids are mapped 
to quantitative values representing their physicochemical or biochemical properties, such as hydrophobicity; scales are then used to represent 
a protein sequence as a time series and statistics like maximum, minimum and averages are computed for sliding windows of different sizes) 
and transformed CDT features (e.g., protein sequence composition regarding amino acids of different polarity, hydrophobicity, charge or 
solvent accessibility (Dubchak et al., 1995)). Feature values were computed by inputting at most 20 (randomly selected when ≥20) protein 
sequences per OG into the ProFET Python script (https://github.com/ddofer/ProFET) and by averaging the resulting gene-level values. 

Conserved gene neighborhoods. A feature value represents a log-distance (in the number of nucleotides) between an instance (row) OG 
and a feature (column) OG, averaged over 2,071 genomes. It is computed by: first, sampling at most 20 pairs of distinct genes (selecting 
randomly when ≥20) from a genome, such that one gene represents the instance OG and another represents the feature OG; second, 
computing for each pair of genes a distance as explained below and computing its log2; third, averaging the log-distances; fourth, collecting 
those averages for all genomes in which the instance and feature OGs co-occur; finally, averaging through genomes if the OGs co-occur in 
≥3 genomes or otherwise taking the log2 of maximum distance (equal to the length of the longest observed genome). 



A distance between the two genes gi and gj, where gi precedes gj, was computed as: 

This measure accounts for shorter distance between those measured in forward or reverse directions, assuming that microbial genomes are 
circular. In particular, gi ending position ei is first subtracted from gj starting position sj and then the number of nucleotides that follow gj is 
subtracted from the genome length L and the result added to the number of nucleotides that precede gi. 

Empirical kernel map. Features represent OGs from the six model microorganisms: Escherichia coli K12 MG1655, Streptomyces 

coelicolor A3 2, Bacteroides fragilis NCTC 9343, Bacillus subtilis 168, Pseudomonas aeruginosa PAO1 and Staphylococcus aureus NCTC 
8325. Feature values are logarithms (base 2) of the lowest e-values observed between distinct pairs of genes (max. 20 per OG), one from the 
instance (row) and another from the feature (column) OG. E-values were computed with Lambda v.0.4.7 in blastp mode by searching genes 
from the rest of the 2,065 genomes against the genes of the six model organisms. To avoid possible circularities with the transfer of gene 
function via homology within OGs (see below), the Lambda e-values below 10-2 were represented as missing values. 

Translation efficiency profiles. Values of the first group of features are predicted OG expression levels through 2,071 genomes. When a 
gene is present in a genome its expression was predicted from codon usage biases using the ‘Measure independent of length and 
composition’ (MILC; Supek and Vlahoviček, 2005). MILC compares a gene against highly expressed genes in which codon usage is biased 
towards efficiently translated codons (ribosomal genes, translation initiation/elongation factors, and chaperones). OG-level MILC is maximal 
MILC observed across the genes in an OG. Since the OG presence matrix is sparse, we substituted missing values with random values 
sampled from the first quartile of the known MILC values for the genome. Values of the second group of features are the predicted OG co-
expression levels through multiple genomes, i.e., Spearman's rank correlation coefficients computed between pairs of MILC vectors (without 
random values) one representing an instance OG and another a feature OG. Coefficients were computed for OGs that co-occur in ≥3 
genomes. For other OG-pairs it is assumed that they are not correlated (feature value is zero). 

Functional annotation scheme. Each OG was annotated with a set of GO terms that were originally assigned to ≥50% of OG member 
genes, counting only across genes that initially had any GO term assigned. Annotations with evidence codes denoting both the experimental 
and the electronic annotations  from all three GO domains were assigned to OGs, while propagating upwards  to the GO root. 

In the analysis we differentiate GO terms by their generality and information accretion. Generality is expressed though Shannon 
Information Content (IC) that assigns high scores to infrequently used terms (Bourne, 2009): 

IC(GOi) = –log2 frequency(GOi)  

Information accretion (IA) assigns high scores to GO terms that contribute with new information when added as a specialization of a 
parent or a set of parent terms (Clark and Radivojac, 2013): 

IA(GOi) = –log2 P(GOi|T) 

T is a set of parent terms in GO and P denotes conditional probability. 

IC and IA were measured among UniProt-GOA genes of the 2,071 genomes that received at least one annotation. IA was computed using 
the SemDist R package (Gonzalez and Clark, 2014). 

Hierarchical multi-label classification. A separate classifier was constructed from each of the five data sets using CLUS-HMC 
(https://dtai.cs.kuleuven.be/clus/) with default parameters, except for these settings: decision tree pre-pruning to prevent the algorithm to 
form a leaf node when the number of instances in the node is <5; forest size to 200 trees; size of feature subsets to square root of the total 
number of features. Classifiers were constructed from 15,318 OGs with at least one GO term assigned. Predictions were collected for both 
annotated (from the out-of-bag crossvalidation procedure) and unannotated OGs. For each OG, a classifier outputs a vector of confidence 
scores ranging from zero to one, which indicate classifier’s confidences in assigning each of the GO terms to the OG. 

Late fusion schemes. Two basic approaches to fusion of multiple classification models are early and late fusion. The former concatenates 
distinct feature sets into a single data set from which one classifier is constructed, while the later fuses confidence scores output by the 
separate classifiers, each constructed from a distinct feature set. In practice, for the late fusion schemes that work across OGs, we took as 
input a set of vectors with confidence scores output by the five individual classifiers. We then combined them into a new vector with fused 
confidence scores – the ‘one vote’ scheme, for example, means taking the maximum confidence score observed between the individual 
classifiers for each OG-GO pair; the ‘best precision’ scheme takes the maximum Pr score (see below). 

Converting confidence scores into precision (Pr) scores. The confidence scores of the individual classifiers and the fused confidence 
scores were converted into Pr scores which, unlike the confidences, have a probabilistic interpretation: they are equivalent to 1 - false 
discovery rate. First, for each classifier/scheme pair, the mapping between confidence and Pr scores were computed separately for each GO 
category by constructing a precision-recall (P-R) curve. In particular, this entails: varying confidence thresholds from 1.0 to 0.0, with the step 
of 0.001, consequently increasing the number of OGs annotated with the GO. At each threshold, we computed the number of  true positives 
(TP) that represent the correctly predicted true annotations, false positives (FP) that represent the number of incorrectly predicted true 
annotations and Pr score that represent a proportion of predictions known to be true: TP/(TP+FP). Then, for each OG-GO pair, the 
confidence score was rounded to three decimals and substituted with the Pr score corresponding to that specific confidence threshold and the 
GO of interest. The first step was performed on the training set OGs, while the second step was applied to all OGs. 

Evaluation measures in cross-validation. Classifier/scheme performance in cross-validation (i.e., out-of-bag) was evaluated using P-R 
curves and the ‘area under the P-R curve’ (AUPRC) scores. P-R curves were computed separately for each GO category by varying a Pr 
threshold from one to zero and collecting at each threshold TP, FP, false negatives (FN) that represent the number of missed true annotations, 
precision (TP/(TP+FP)) and recall (TP/(TP+FN)) that represents a proportion of true annotations that were successfully predicted. 
Intermediate P-R points were estimated using linear interpolation. P-R curves for individual GO terms were averaged and presented on a 



graph where recall is plotted on x and precision on y-axis. AUPRC was computed as area enclosed between x-axis and the curve (when min. 
observed recall was >0, the precision computed at this min. point was estimated at recall =0 point in order to close the curve). Curves shifted 
to the left and upwards (AUPRC closer to one) denote better performance of the classifier or late fusion scheme. 

Validation using CAFA 2 benchmark. We downloaded the benchmark from http://biofunctionprediction.org/node/12, which included: 
70 E. coli ‘no-knowledge’ benchmark genes (with no previous annotations in all three domains), 406 experimentally-verified GO annotations 
assigned to them (232 Biological process, 139 Molecular function and 35 Cellular component GOs), and the results of 129 automated 
function prediction (AFP) methods and BLAST baseline on that benchmark (full evaluation mode). 

Classifier/scheme performance on CAFA 2 was evaluated by measuring Fmax according to the CAFA 2 rules: 

 

where t denotes the Pr threshold, which varies from 0.01 to 1 with the step of 0.01, n represents the number of E. coli benchmark genes, 
while m(t) the number of those genes having score ≥t for at least one GO term. Pi(t) is a set of GOs having score ≥t for gene i, and Ei denotes 
the set of experimentally-verified GOs for the same gene. Standard deviation of Fmax was computed using bootstrapping with 10,000 
iterations on the set of genes in evaluation (Efron and Tibshirani, 1994). Fmax was computed separately for each GO domain. 

Note on comparison of results from cross-validation and CAFA 2 benchmark. The comparison of results from cross-validation 
experiments and CAFA 2 benchmark has to be interpreted in light of the following points: 

• Different metrics are used: cross-validation experiments were assessed using AUPRC while the CAFA 2 benchmark used Fmax measure.  
AUPRC entails comparing classifiers over the whole range of Pr scores/recall thresholds, while Fmax is based on a single Pr/recall point, 
the one at which F is maximal for the particular classifier/scheme. Fmax measure in that sense under-emphasizes the differences between 
classifiers/schemes, in contrast to the AUPRC which does not depend on choosing the optimal cutoff point for individual classifiers. 

• Number and the distribution of GO functions over which the results are aggregated is very different for the CAFA 2 benchmark and for 
our cross-validation experiments, especially for the Molecular function and Cellular component domains. 

Despite the above, the results demonstrate that fusion schemes generally improve over individual classifiers, with some exceptions in 
Cellular component domain, which can be explained as a combined effect of very small number of GO functions (in terms of number of 
predictions made), and the nature of Fmax measure, which is determined on different Pr levels for each classifier/scheme. Moreover, despite 
the combined models being based on overall precision weighting, high Fmax scores were achieved in comparison with best methods on CAFA 
2 challenge, especially on the Biological process domain. 
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S2   SUPPLEMENTARY RESULTS 
 

 

 

Fig. S2. Complementarity between the individual AFP methods. Heatmaps (a and c) represent complementarity patterns related to GO 
terms of different domains and generality levels: rows are GO terms, columns are classifiers and brighter colors (as well as higher histogram 
bars) indicate higher AUPRC. Hierarchical clustering was applied to rows. (b) Precision-recall curve for a selected GO term where the TEP 
method performs well. Examples of GO terms with positive excess AUPRC, meaning they are learned by one classifier better than by the 
rest of the classifiers, are presented for distinct classifiers in Revigo plots (d-g). Excess AUPRC for a classifier and a GO term is computed 
by subtracting GO AUPRC of the second best-performing classifier from the classifier’s GO AUPRC. Large excess (red) indicates high 
complementarity, i.e., high level of classifier’s specialization in learning a GO term. PP, phyletic profiles; EKM, empirical kernel map; CGN, 
conserved gene neighborhoods; TEP, translation efficiency profiles; BPS, biophysical and protein sequence properties. 



 
 

Fig. S3. Comparisons of predictive performance of individual methods and fusion schemes, measured in cross-validation and on the 

CAFA 2 benchmark for the Molecular function and Cellular component GO domains. (a, c) Precision-recall (P-R) curves are computed 
by averaging P-R curves of individual GO terms, computed in cross-validation. (b, d) Bars represent the average AUPRCs computed from 
the P-R curves in (a, c) and error bars represent standard error of the mean. (e) Bars represent Fmax on CAFA 2 E. coli benchmark and error 
bars represent standard deviation obtained by bootstrapping the set of benchmark genes. PP, phyletic profiles; EKM, empirical kernel map; 
CGN, conserved gene neighborhoods; TEP, translation efficiency profiles; BPS, biophysical and protein sequence properties. 

 



 
 
 
 
 
 
 
 
 

 
 

 

Fig. S4. Proportion of genes in six representative microorganisms that received at least one novel specific GO prediction (IC≥5) at 

different Pr thresholds. 
 



 
 

Fig. S5. The overlap between prediction methods in terms of  genes of representative organisms that received at least one novel 

prediction at three Pr thresholds. Venn diagrams are approximate and may omit minor in order to emphasize major overlaps; exact data is 
given in Table S1. 
 



 
 
Fig. S6. Percentages of 1,227 GOs assigned by individual prediction methods and fusion schemes to at least one OG at different Pr 

thresholds. PP, phyletic profiles; EKM, empirical kernel map; CGN, conserved gene neighborhoods; TEP, translation efficiency profiles; 
BPS, biophysical and protein sequence properties; 1, one vote; C, consensus; W, weighted voting. 

 

 

 
Fig. S7. Overlap between methods in terms of E. coli genes that received CAFA 2-validated novel predictions at Pr thresholds 

corresponding to Fmax. Rows represent genes, columns are GOs with IC≥5 and colored cells represent validated predictions. Colors are 
grouped to represent methods with positive excess AUPRC for the predicted GOs (e.g., purple for PP). Color intensity represents excess 
AUPRC value. The table represents a reduced subset of predictions that still maintains overlap patterns. Fmax thresholds: Biological process: 
PP 0.44, EKM 0.39, CGN 0.5, TEP 0.51, BPS 0.56; Molecular function: PP 0.45, EKM 0.64, CGN 0.41, TEP 0.39, BPS 0.43; Cellular 
component: PP 0.26, EKM 0.14, CGN 0.26, TEP 0.21, BPS 0.12. 



 
 
Fig. S8. Average information accretion per gene of the known annotations and the novel annotations assigned by methods and fusion 

schemes at different Pr thresholds. For a microorganism, the bars represent methods/schemes in the following order: PP, EKM, CGN, 
TEP, BPS, ONE VOTE, CONSENSUS and WEIGHTED VOTING. PP, phyletic profiles; EKM, empirical kernel map; CGN, conserved 
gene neighborhoods; TEP, translation efficiency profiles; BPS, biophysical and protein sequence properties. 
 
 

 
 
Fig. S9. Known vs. novel information for E. coli genes. Scatterplot points represent E. coli genes, while their positions represent known 
information accretion (x-axis) vs. new information accretion that was assigned by the ‘consensus’ fusion scheme (y-axis). Each scatterplot 
presents information that stems only from the domain-specific GO annotations assigned to the genes. Information is expressed in bits. Red 
line represents the first quartile with genes having the least known information and blue line the third quartile. The numbers beside the lines 
represent average information accretion (in bits/gene) per first/third quartile genes contributed by Consensus at Pr≥50% to the specific 
domain. Magenta line represents a moving average over novel information. 



 

 

 

 

 
 

Fig. S10. Accuracy of classifiers increases with addition of genomic data. (a) X-axes represent the number of randomly sampled genomes 
(of the 2,071 total), shown in approximate log scale. Y-axes represents classifiers’ AUPRCs (in cross-validation) averaged over the selected 
subset of GO terms from the Molecular function and Cellular component domains and error bars standard error of the mean. IC, information 
content. (b) Approximate slopes of the regression lines for a prediction method/integration scheme, as average over the slopes of segments 
connecting points in plot; complete table with slopes in Table S3. 



 

Table S1. The number of microorganisms’ genes that received at least one novel prediction from different combinations of methods 

at three Pr thresholds. This data was used to draw Venn diagrams in Fig. 4b and Fig. S5. 

 
 

 

 

Table S2. The number of GO terms that different combinations of methods simultaneously assigned to at least one OG at different 

Pr thresholds. 

 



Table S3. Slopes of the lines from Fig. 5a and S10. Large numbers (green boxes) represent steeper slopes, which indicate bigger 
improvements in accuracy with arrival of more sequenced genomes. In contrast, small numbers (red boxes) represent less steep and negative 
slopes, which indicate saturation and suggest no further improvement from additional genomic data. Slope values are determined as in Fig 
S10 and are multiplied by 1000. 

 

 


