SUPPLEMENTARY METHODS
Performing multiple runs of NMF text analysis 		
Since NMF has a stochastic component and can therefore yield different solutions depending on the initial values, we ran the 50-factor NMF five times, and additionally the 100-factor NMF three times, with a different random seed, in order to maximize the coverage with discovered phenotypic concepts. We also performed another run of NMF with 100 factors for the matrix in which we allowed word to be absent in one of the five text corpora, which allowed a broader set of words to be considered at the expense of consistency across texts. For each of these variants, we repeated the procedure of grouping similar topics described in the Methods. We calculated the Pearson correlation coefficient between the centroids of these new groups with the ones already chosen (by manual inspection) as traits, and after further manual curation kept only those describing new traits. 
Finally, we assigned organisms to phenotypes according to the weights in the NMF H-matrix across all factors in the group describing that trait. For each organism with at least three assigned weights, we determined the median of the weights in the group of factors. Organisms with exactly two NMF weights, if both >0, received the smaller weight. In order to empirically determine a threshold for the provisional phenotypic labels, we examined examples of well-known traits (hyperthermophiles, plant pathogen, human oral cavity bacteria) to determine the following rule-of-thumb: the top-ranked organisms that made up 60% of the total sum of NMF weights, or the 10 top-ranked organisms (whichever number is higher) were labelled as positives, while all organisms with exactly zero NMF weight were negative examples.
Definition of classification accuracy measures
In a classification task, the precision is defined as , where  denotes the number of true positives and  denotes the number of false positives. Recall is defined as , where  denotes the number of false negatives.  score is calculated as the area under the precision-recall curve.  score is the area under the receiver operating characteristic () curve defined by false positive rate () on the x axis and true positive rate ()  on the y axes.  is equivalent to recall, while  is defined as , where  denotes the number of true negatives. The  measure is the harmonic mean of precision () and recall (): .
Estimating false discovery rates using precision-recall curves
The precision score for the positive class of each prediction (phenotype assignment to a microbe) was calculated as described above (the number of true positives divided by the total number of examples classified as positives), at the confidence score threshold that was assigned to that prediction by the SVM. Conversely, for the negative class, the precision score for the negative assignment of a particular phenotype to an organism was determined as the number of true negatives divided by the total number of examples classified as negatives. Precision scores for organisms in the initially unlabeled set of organisms were calculated via linear interpolation between the neighboring confidence points in the cross-validation precision-recall curve, which was previously determined using known examples. 
[bookmark: OLE_LINK8][bookmark: OLE_LINK9]Furthermore, we adjusted the precision score estimates to account for difference in class sizes. In particular, the estimates of the precision score (or, equivalently, FDR) depend on the relative proportion of positive/negative labels for the particular phenotype: the minimal precision cannot fall below the percentage of true positives/negatives in the learning set. This is a particularly evident issues in highly unbalanced classes, where by default, the precision for the majority label (typically, the negative one) will always be large, even for inaccurate classifiers. Thus, we adjusted the precision scores by subtracting the percentage of true positives and dividing with the (1-percentage of true positives). This ensured that the minimum precision is 0 (or equivalently that the maximum FDR is 100%), regardless of the number of positively/negatively labelled examples for the phenotype. We used the adjusted FDRs in all further analysis. Importantly, this adjustment is always conservative i.e. the FDRs are always adjusted upwards.
Assignment of positive and negative classes. 
The adjusted precision scores (and, equivalently, FDRs, as described above) were determined separately for both the positive and the negative class of each phenotypic trait. The overall precision was calculated as ‘n votes’, meaning that we took the nth highest score for that class. Then, for a chosen FDR threshold we assigned the value 1 (presence of a trait) if the ‘n votes’ FDR for a positive class was greater than a chosen FDR threshold and the value 0 (absence of a trait) if the ‘n votes’ FDR for a negative class was greater than a chosen threshold. In the cases where the ‘n votes’ FDRs for both positive and negative class were greater than a threshold, we assigned the value of a minority class. Only for the purposes of visualization in the Figure S3, which shows cumulative coverage with annotations at different precision thresholds, we employed the following rule: we always assigned the value of the class with higher FDR value and only in the case of ties assign the value of a minority class. Instances that did not have the ‘n votes’ FDR greater than a chosen threshold did not receive a label for positive or negative class and remained unannotated. 
	In most cases the minority class was positive class, but for some phenotypes such as ‘mesophilic’ or ‘free-living’ the minority class was negative. Therefore, for the results calculated only for the minority class, we also report the information about the sign (positive or negative) of the minority class for that phenotypic trait (Supplementary Table S3).
Constructing features used to predict of phenotypes from genomic data
For the prediction of traits from the amino acid content of the proteome (1), we used amino acid and di-amino acid frequencies of a proteome as features, yielding 420 features. If there was more than one sequenced strain for a species, we took the strain with the highest genome quality score (2).
The gene repertoire of the genome was encoded as the presence/absence of the clusters of orthologous groups (COG) of proteins resulting in the total of 80576 binary valued features. For those species containing more than one high quality sequenced strain, we took the more frequent value; in the case of equal frequencies we gave advantage to the gene presence.
Pairwise co-occurrences of species in metagenomes were calculated as previously (3). We compared 16S rRNA sequences of species from our database against OTUs representative sequences using BLAST, with all parameters as in (3), except that ≥95% sequence identity was required, thus resulting in 1240 mapped species and 1240 features in the learning data.
The gene neighborhood representation covers the 300 COGs occurring in at least 80% (2205/2756) of species with high-quality sequenced genomes (allowed number of scaffolds ≤50). Features were encoded as the log pairwise chromosomal distance in nucleotides between each pair of COGs, in total 44850 features. Distances were measured from closest end of gene coding region. If either member of the COG pair was absent in a genome (or was located on distinct scaffolds in draft genomes), a missing value was recorded. If a COG was assigned to more than one gene in a genome, the minimal distance to the genes in the other COG was recorded. If COGs in the pair were found on different chromosomes, we set the distance to half-length of the larger chromosome. Additionally, all species with less than 100 non-missing values were removed from the data set. For species with multiple sequenced strains, the COG pairwise distance was calculated as the median across strains.
In translation efficiency profiles (4), the data set features quantify codon usage biases of COG/NOC gene families across genomes, measured using the MILC method (5). MILC is a normalized chi-square statistic that compares the relative codon frequencies in a protein-coding gene against a reference set of highly expressed genes, here encompassing ribosomal protein genes, translation initiation factors, translation elongation factors and chaperones (as in (6)). The OG-level score is the maximal observed MILC of genes assigned to that COG in one genome. The features describe a set of 990 COGs occurring in at least 50% of examined species. If a COG was absent in a species, the feature value was set to missing value. For species containing more than one strain with high-quality genomes, we took the average MILC across all such strains.
Overlap between phenotypic traits
Network analysis was performed on binary phenotypic trait labels at a FDR<20% requiring agreement of two independent predictions (‘two-votes’). The binary overall precision was 1 if two-votes FDR for the positive class was <20% and less than FDR for negative class; equivalently, for negative class. The network was visualized using Gephi (7). Edge weights between nodes were calculated using the F1 measure and only the 533 edges with highest weights were retained prior to visualization. The nodes were arranged using ForceAtlas2 visual layout. We resized the nodes based on their degree and filtered out all nodes without neighbors. We partitioned the nodes based on modularity that uses a community detection algorithm proposed in (8). 
Covariates describing phylogenetic relatedness
We obtained a microbial phylogeny from the Living Tree Project (LTP), release 123 (9) reconstructed using 16S rRNA sequences from SILVA (10). Out of 3046 microbial species, 2017 could be matched to LTP exactly, and we cross-referenced a further 713/136/103 organisms to the LTP by finding matching species at the genus/family/order-level; the remaining 76 microbes in our data could not be matched to LTP and were not used in the association analyses. The LTP tree was converted to a pairwise distance matrix of all LTP species and processed using principal components (PC) analysis, wherein the first 8 PCs retained 96.2% of the variance from the original species distance matrix and were included as covariates in logistic regression (see below).
Gene-trait associations
We used the binary phenotypic trait annotations predicted from text mining to search for associations between the occurrence of each gene family and each of the phenotypes, while considering 80,576 prokaryotic COG/NOG gene families from eggNOG 3 and 1640 (of 3046) microbial species that had textual data. We required the phenotypic labels to have FDR<10% for the positive class in at least one text corpus to be annotated as positive examples; equivalently for negative labels. In cases where FDR <10% for both the positive and the negative class, the minority class label was assigned. We considered phenotypes having ≥10 labelled examples, resulting in 166/424 phenotypes for known phenotypic annotations and 332/424 phenotypes for the known plus novel annotations. As a first-pass filter, we tested all COG-phenotype pairs with odds ratio (OR) ≥2 or OR≤0.5 and significant at nominal p<=0.01 using Fisher exact tests, performed separately for bacterial and for archaeal species. 
This resulted in 2.8*105 associations for the known annotations, and 1.0*106 for the known plus novel annotations, which were further tested using logistic regression to control for confounding of evolutionary relatedness. In particular, we included 8 covariates derived from a known 16s rRNA phylogenetic tree (principal components of the species’ pairwise distance matrix; Supplementary Methods). In addition, we also adjusted for confounding of genome size and G+C content (3, 11). Confounders were normalized to [0,1] and logistic regression in Matlab 2011b was then run on these 8+2 covariates and the presence/absence pattern of one COG as the independent variables, and one phenotypic trait annotation as the dependant variable. This was repeated for each COG-trait combination, and significant results re-tested using R-3.2.4 (glm function, setting family=binomial). The coefficient β of the COG variable and its standard error were used to find the OR adjusted for covariates, and its confidence interval. The p-values from a t-test on the β coefficient were FDR-corrected, pooling tests across all COGs and all phenotypes. Conservatively, the total number of tests for the FDR correction also included those that failed the first-pass Fisher’s exact tests, if the effect size was sufficient. Finally, we report the COG/trait combinations for which the OR (adjusted for covariates) was >4 or <0.25.
 
Epistatic interactions
We used the same binary phenotype annotations as for finding gene-phenotype associations (only text predictions, FDR<10%), while focusing on 2663 COG/NOG gene families appearing in ≥200 (of 1640) species. As a first-pass filter, we required COG-COG-phenotype combinations to have the ratio of ORs 2 (for positive class) or ≤0.5 (for negative class) and tested them using a Z-test for the difference of log odds ratios, requiring p≤0.0001 (unadjusted) in either bacteria or archaea. This resulted in 3.3*106 and 12.8*106 tests, for the known and the known plus novel annotations, respectively, which were further tested using logistic regression while controlling for 8+2 confounders as described above. In addition, the presence/absence patterns of both COGs were also included as covariates, while the genetic interaction variable to be tested was represented as the product (equivalent to a logical AND) between COGs in a pair. The logistic regression was repeated for each COG-COG-phenotype combination, where the covariate-adjusted ORs of the interaction variable (ORinter) and its confidence intervals were determined from the β coefficient. The p-values from a t-test on the β coefficients were FDR-corrected (total number of tests included also the COG-COGs-phenotype combinations that did not pass the first-pass filter). We impose effect size thresholds to require ORinter<0.25 to call antagonistic epistasis and ORinter>4 for synergistic epistasis.
Simulation studies of prevalence of gene-phenotype associations
The effect that coverage with phenotypic labels affects has the number of recovered gene-phenotype associations was examined in an analysis of 18 representative phenotypes. Herein, we considered the set of gene-phenotype associations that were significant using the full set of phenotypic annotations (including the annotations we predicted from text mining at FDR<10%), while requiring FDR<10% and OR>4 in the initial association analysis (test on the β coefficient of logistic regression; see above). Then, we created random samples of this data by choosing 100%, 98%, 96%, 94%, ... 50% of the labelled organisms from the initial analysis, and repeated the logistic regression test on the COGs that were initially significant at FDR<10%. We recorded the number of highly confident (FDR<1%, OR>4) significant COGs for each sampling, and fit a linear function between the number of organisms annotated with a phenotype versus the number of discovered significant relationships.
Functional annotation of COG gene families
Gene Ontology (GO) terms were assigned to COGs/NOGs by propagating the GO annotations of the underlying genes across the gene families. In particular, genes were mapped to OGs in the eggNOG 3 database (31) using Lambda v0.4.7 (41) in blastp mode with e-value threshold of 10-5, and assigning a gene to the lowest e-value OG if the hit had sequence identity>30%. Then, each COG was annotated with a set of GO terms that appear in >=50% of its constituent genes, as recommended previously (12) , tallying only the genes that had any GO term assigned. Both the experimentally verified and electronic annotations in the UniProt GOA database (13) from all three GO domains were assigned, and propagated upwards to their parent GO terms, following the structure of the GO graph.
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SUPPLEMENTARY FIGURES	
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[bookmark: _GoBack]Figure S1. Benchmarking the accuracy of five machine learning algorithms for phenotype prediction. A selection of 60 phenotypic traits was used to determine their prediction accuracy, quantified as the AUC score on a held-out data set that consisted of 1/3 of the original data points (species). Shown separately for the six text corpora, and for the five genome representations. (a) Distributions of AUC scores. (b) Critical difference diagram (14) showing the average relative ranks of the five classifiers, where 1 denotes the best-ranking and 5 denotes the worst-ranking algorithm. The performance of two classifiers is significantly different (p<0.05) if the corresponding average ranks differ by at least the critical difference (denoted as “CD” in the plot).
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Figure S2. Predicting various phenotypes from text and genomic data. (a, b) Precision-recall curves of SVM classification models that were not broadly accurate in predicting phenotypes, but could still annotate a certain number of organisms at high precision thresholds. Shown for the biomass degrading (a) and the opportunistic/nosocomial pathogen (b) phenotype. Both curves are in cross-validation. (c, d) Gene neighborhoods involving a ribosomal gene or translation factor (columns) and a known sporulation gene (rows). Overlaid numbers are FDRs, for difference in pairwise distances between sporulating and non-sporulating bacteria, by Mann-Whitney test. The gene neighbourhood involving spoVFB, spoIVB and spoIIIE genes (c) shown separately from the gene cluster with spoIIIJ and trmE genes (d). 
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Figure S3. Coverage of microbial species with positive and negative annotations at various precision thresholds. “0.8” denotes a precision of >80% and thus a FDR of <20%; “0.9” a precision of >90% and a FDR of <10%. “+” denotes positive labels and “-” negative labels. Known stands for the previously known labels. All predictions are from “one-vote” scheme.
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Figure S4. Validating a sample of phenotype inferences by manual curation. All panels show the actual precision scores (equivalent to 1-FDR) determined via literature curation, where the x axis shows data points binned by the nominal precision. (a) Accuracy of the FDR estimates for the three sets of phenotypic traits. (b) The evaluation results are consistent between the two curators. (c) Top panel shows the validation of cases where the predicted label contradicted the known label. Approx. ½ of such predictions were ultimately correct, while the initial labels appeared to be incorrect. Bottom panel shows the rare cases where the same annotation was supplied in the two source databases, but having opposite sense. Error bars are 95% C.I. (adjusted Wald).
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Figure S5. The distributions of the number of traits annotated per species, shown for individual prediction methods. The top row shows coverage histograms pertaining to the text-mining predictions from the six text corpora. The bottom row (blue bars) describes the coverage with the predictions from the five comparative genomics methods. The bottom right plot (orange bars) shows the coverage after integrating the predictions over the eleven methods by using the ‘two-votes’ scheme. All panels show numbers of annotations at a FDR<10%.
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Figure S6. A network of microbial phenotypes. Similarity between pairs of phenotypes was estimated using the F1-measure, which accounts for the overlap both in the organisms receiving positive labels and in those receiving negative labels. Edges show the 533 edges with highest F1 similarities; width of edge reflects degree of similarity. Colors show results of the modularity based partitioning run on the network. Size of the nodes corresponds to the nodes degree. Nodes are arranged according to the ForceAtlas2 visual layout.
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Figure S7. Number of discovered gene-trait associations increases approximately linearly with the number of labelled organisms. (a, b, c) Simulations were used to estimate the number of gene-phenotype relationships for different levels of coverage with trait labels. Experiments were run on 18 representative phenotypes. Rightmost point of every phenotype (color) is the full set of phenotypic labels, including known and inferred (at FDR<10%; text sources only) labels. Points to the left are obtained by progressively reducing the number of microbes by random sampling, down to 50% of the original coverage. Y axis is the number of associations significant at FDR<1% (t-test for significance of logistic regression coefficient). (d) The R2 and slopes of the fitted linear functions.
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Figure S8. Coverage and validation of predicted gene-phenotype associations and epistatic interactions. (a) Odds ratios are denote relative enrichments of the genes associated to the phenotypes in the known sporulation and flagella gene sets (18). “Sporul(1)” denotes the set of sporulation genes found in reference (15), “Sporul(2)” the set of genes in reference (16), and “Sporul(3)” in reference (17). The known versus the known+inferred (<10% FDR, text mining only) set of annotated microbes are compared.  Error bars are 95% C.I. of the odds ratio. Shown p-values by Z-test for difference of log odds ratios. (b) A histogram showing the amount of significant epistatic interactions detected per phenotypic trait.



SUPPLEMENTARY TABLE LEGENDS

Table S1. Supporting information regarding the curation of the known phenotype labels from existing databases. Contains: (a) the list of matched and non-matched traits between the NCBI and BacMap databases and, in addition, the categorization of diseases and hosts used in these databases; (b) all instances of Discordant annotations between the NCBI and the BacMap databases; (c) the list of the biochemical phenotypes and all synonymous names thereof, used in manual curation from journal articles; and (d) a curated list of frequent keywords that were filtered out from texts prior to the NMF analysis.

Table S2. Discovery of phenotypic concepts from free-text using non-negative matrix factorization (NMF). Contains: (a) Top 20 keywords and their weights are shown for each concept (group of NMF factors), as well as its constituent NMF factors; and (b) a benchmark of the NMF concepts versus a methodology based on hierarchical clustering of keywords.
Table S3. Accuracy of phenotype prediction from text and genomic data sources. Contains: (a) benchmarks of the accuracy of five machine learning algorithms in predicting a sample of 60 phenotypic traits; (b) Accuracy (as AUC and AUPRC scores) for all combinations of trait-data source; (c) recall scores at two FDR thresholds for each classification model; and (d) same, but providing the numbers of false positive and of false negative examples. 
Table S4. The sets of comparative genomics features with positive Random Forest feature importance scores, broken down by individual phenotypic traits.
Table S5. Detailed statistics describing the validation of the inferred phenotypes via literature searches by two curators.
Table S6. Gene-trait associations detected after controlling for confounders (phylogenetic relatedness, genome size and G+C content) and their enrichment in Gene Ontology functional categories. Contains: (a) Statistically significant associations of COG/NOG gene families to phenotypic traits. The “odds ratio” column is O.R., adjusted for covariates using logistic regression. Significance calls were by a t-test on the β coefficient, reported as false discovery rates (“FDR” column). The “data set” column shows whether the association was more confidently detected in the known set of phenotypic labels, or in the extended set of labels. (b) Gene functional categories significantly enriched with COG/NOG gene families that were associated to particular phenotypic traits. Significance calls were by Fisher’s exact test (one-tailed, enrichment only), and reported as false discovery rates (“FDR” column). The “data set” column shows whether the association was more confidently detected in the known set of phenotypic labels, or in the extended set of labels.
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