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Abstract. Hierarchical multi-label classification (HMC) is a supervised machine
learning task, where each example can be assigned more than one label and the
possible labels are organized in a hierarchy. HMC problems emerge in domains
like functional genomics, habitat modelling, text and image categorization. They
can be addressed with global model induction algorithms, which induce a single
model that predicts the complete hierarchy, as well as with local algorithms, which
induce multiple models that predict different segments of the hierarchy. However,
there is no consensus about which of these approaches perform the best over
different domains, especially in the setting of learning ensembles.

We introduce the hierarchy decomposition pipeline, a publicly available tool-
box for comparison ofmodel induction algorithms onHMCproblems in an ensem-
ble setting. The pipeline includes five algorithms, including the algorithm that
predicts the complete hierarchy, and algorithms that perform partial and complete
hierarchy decompositions. One of these algorithms is the novel “label specializa-
tion” algorithm that constructs a local multi-label classification model for each
parent label in a hierarchy that simultaneously predicts the respective children
labels.

We apply the pipeline on ten HMC data sets from four domains, which have
both tree and directed acyclic graph label hierarchies, and confirm that there is no
single best algorithm for all HMC problems. This finding shows that there exists a
need for such a pipeline that enables a user to choose the best performing algorithm
for his/her HMC data set. Finally, we show that the choice can be narrowed to a
specific type of algorithm, based on the characteristics of the label hierarchy and
the data set label cardinality.

Keywords: Hierarchical multi-label classification · Hierarchy decomposition ·
Structured prediction

1 Introduction

Hierarchical multi-label classification (HMC) is a supervised machine learning task,
where each example can be assigned more than one label and the possible labels are
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organized in a hierarchy [1]. The hierarchy can be in the shape of a tree, where each
label has exactly one parent label, or in the form of a directed acyclic graph (DAG),
where a label can have multiple parent labels. Label assignments follow the hierarchy
constraint: When a label is assigned to an example, all labels on all possible paths from
that label to the root of the hierarchy must be assigned too.

Many real life problems are best representedwithHMCdata sets [2–10]. An example
of a HMC problem is gene function prediction, which aims to predict the biological
functions of genes. Examples of gene function are the tree shaped hierarchy of FunCat
[11] and the more comprehensive DAG shaped hierarchy of the Gene Ontology [12].
The latter is composed of three domains – molecular function, biological process and
cellular component – and a single gene can be assigned with multiple functions from
each of the three domains [13].

Model induction algorithms for HMC problems can be divided into two groups
[14, 15]. Global algorithms induce a single model that predicts complete hierarchy.
They can exploit dependencies among labels during a model induction phase to improve
model’s predictive performance. An example of the global algorithms is Clare and King
[16] adaptation of the decision tree algorithm C4.5 [17], which predicts labels on dif-
ferent levels of a hierarchy by assigning a larger cost to misclassification high up in the
hierarchy. Another example is the predictive clustering tree (PCT) algorithm, a gener-
alization of the decision tree algorithm that predicts labels from both tree [18–20] and
DAG hierarchies [1]. Local algorithms induce multiple models that predict a different
part of a hierarchy, and then combine the predictions of those models. Some examples of
a local algorithm construct an SVM model for each label and then combine predictions
so as to satisfy the hierarchy constraint [21–24].

Levatić et al. [25] compare the predictive performance of four model induction algo-
rithms over HMC problems from different domains. They compare two global and two
local algorithms, where one in each group exploits the hierarchical dependencies among
labels when constructing model(s) and the other does not. Both global algorithms con-
struct one multi-label model, while both local algorithms construct many single-label
classification models. All four approaches construct single PCT models of (random for-
est and bagging) ensembles of PCTs. When a single PCT models are constructed, the
algorithms that exploit hierarchical dependencies outperform those that do not. How-
ever, when PCT ensembles are constructed, it is less clear what is the best performing
algorithm.

We introduce the hierarchy decomposition pipeline, a publicly available toolbox for
comparison of model induction algorithms for HMC problems in the ensemble setting
(https://github.com/vedranav/hierarchy-decomposition-pipeline). The pipeline includes
five algorithms, beginning with an algorithm that predicts the complete hierarchy in
one shot, and following with four algorithms that perform partial and complete hierar-
chy decompositions. Partial decomposition algorithms construct models that predict the
presence of one or more edges of the hierarchy, while complete decomposition algo-
rithms construct model(s) that predict the presence of individual or all hierarchy nodes.
We propose a novel partial decomposition algorithm, called the “label specialization”,
that constructs a multi-label classification model for each parent label in a hierarchy,
which predicts the presence of its children labels. The algorithm is an extension of the
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hierarchical single label classification algorithm [1] that constructs a single-label classi-
fication model for each parent-child pair in a hierarchy, where collection of such models
for a given parent can be viewed as a binary relevance classifier. Apart from the men-
tioned algorithms, the pipeline contains tools for performance-based comparison of the
algorithms.

We applied the pipeline on ten HMC data sets from four domains. In the text cate-
gorization domain, we use the Enron data set that categorizes e-mails from the Enron
corporation officials [4] and the Reuters data set that categorizes Reuters stories [5].
In the image categorization domain, we use two data sets from the 2007 CLEF image
retrieval campaign that categorize medical X-ray images [7]. In the habitat modelling
domain, we use the Danish farms data set that models the habitats of soil microarthro-
pods [6] and the Slovenian rivers data set that models the habitats of aquatic organisms
[2]. In the functional genomics domain, we use two data sets intended for predicting
biological functions of genes in two model organisms: the plant Arabidopsis thaliana
and the baker’s or brewer’s yeast Saccharomyces cerevisiae [3]. In addition, we use two
data sets intended for predicting functions of genes in thousands of bacterial and archaeal
organisms [8, 9]. In the first eight data sets, the labels are interconnected in tree shaped
hierarchies, while in the last two the labels form a DAG.

The results of the performance comparison confirm that there is no single best model
induction algorithm for all HMC data sets in the ensemble setting. There is no significant
difference in the predictive performance of the five algorithms over the ten data sets.
This finding shows that there exists a need for the proposed pipeline, which enables a
user to find the best performing algorithm for his/her custom HMC data set. Finally,
the results show that the search for the best performing algorithm can be narrowed to a
specific type of an algorithm based on the characteristics of the hierarchy and the data
set cardinality.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
hierarchy decomposition pipeline. Section 3 describes the experimental setup, including
values of the pipeline’s parameters and theHMCdata sets. The results of the performance
analysis are presented in Sect. 4. We conclude the paper with Sect. 5.

2 Hierarchy Decomposition Pipeline

The hierarchy decomposition pipeline is a toolbox for comparing model induction algo-
rithms for HMC problems in the ensemble setting. The pipeline takes as input a HMC
data set specified by a user and applies five model induction algorithms, beginning with
the algorithm that induces amodel predicting the complete hierarchy and continuingwith
partial and complete hierarchy decomposition algorithms. The performance-based eval-
uation tool computes the areas under the average precision-recall curves and performs
a statistical test. The components of the pipeline are shown in Fig. 1.

The pipeline receives two input files: an HMC data set and a settings file (Fig. 1A).
A description of the input file formats is available on the repository.

The cross-validation module takes the data set and divides its examples into folds
(Fig. 1B). For each fold, it sends a training set to the hierarchy decomposition and the
model induction modules, and a test set to the annotation module.
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Fig. 1. The hierarchy decomposition pipeline.

The hierarchy decompositionmodule transforms an input training set intomultiple
training sets by applying two types of decomposition:

Partial decompositions construct multiple training sets representing different edges
of a hierarchy (Fig. 1C).Thefirst partial decomposition “child vs. parent label” constructs
a binary training set for each child-parent label pair in a hierarchy, composed of the
training examples originally labeled with the parent label. In a newly created training
set, the examples originally labeled with the child label are labeled as positive, while the
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rest of the examples are labeled as negative. The second partial decomposition, “label
specialization”, constructs a multi-label training set for each parent-children group of
labels in a hierarchy, where the training set contains all examples originally labeled with
the parent label, now only labeled with the applicable children labels.

Complete decompositions construct one or multiple training sets representing the
nodes of the hierarchy, and ignoring the edges (Fig. 1D). The training set(s) contain the
same examples as the input training set, but annotated with the labels that belong to the
subset of most specific annotations. For example, if an example is originally labeled
with two paths “root > 1 > 1.1” and “root > 2 > 2.1 > 2.1.1”, the example will be
newly labeled with the most specific annotations 1.1 and 2.1.1. Accordingly, the subset
of most specific annotations contains the labels that appear at least once as the most
specific annotation in the input data set. The first complete decomposition “label vs.
the rest” constructs a binary training set for each most specific annotation, where the
examples originally annotated with the label are newly labeled as positive and the rest of
the examples as negative. The second “labels without hierarchical relations” constructs
a single multi-label training set that captures label cooccurrences by labeling examples
with one or multiple labels that qualify as most specific annotations.

Themodel induction module constructs classification models from the input train-
ing set and the training sets created by the hierarchy decomposition module (Fig. 1E).
The task of constructing the baseline model from the input training set is a HMC task,
and the tasks of constructing models from the decomposed training sets are multi-label
and binary classification tasks. Consequently, we choose PCTs as a base model, since
the PCT algorithm covers all three modeling tasks in a unified framework. For each
training set, a random forest of PCTs is constructed using CLUS [1].

Annotation module classifies an input test set by using the models created by the
model induction module. It combines the predictions from multiple models and applies
the hierarchy constraint (Fig. 1F, G). For each of the five model induction algorithms
it outputs a table with predictions, where rows are test examples, columns labels and
values probabilities that the labels are assigned to the examples. The tables are obtained
in the following manner:

The baseline model is the global model that implicitly enforces the hierarchy con-
straint when annotating test examples. We use the outputted predictions as given by the
model.

The child vs. parent label model collection is composed of multiple binary clas-
sification models, one for each non-root label lj that outputs a conditional probability
P(lj |parent(lj)). To make a prediction for a test example ei and a label lj, the product rule
P(lj) = P(lj |parent(lj)) · P(parent(lj)) is applied recursively, beginning with the model
where parent(lj) is the root of a hierarchy. The procedure is illustrated with an example
in Fig. 1F. To compute the probability that l5 is assigned to ei, we first use the model
for the label l3 to predict P(l3), which is 0.8. Then, we use the model for the label l5
that predicts P(l5 |l3), which is 0.1. Finally, P(l5) is computed by applying the product
rule P(l5 |l3) · P(l3), which is 0.08. By using the product rule we enforce the hierarchy
constraint, ensuring that the probabilities decrease with increasing depth within the hier-
archy. The presented example shows the case with a single path from a label node to
root of a hierarchy. When a class is a DAG, there can be multiple paths from the label
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node to the root node. In this case, the probability is computed for each path, and the
minimal observed probability is considered (P(l6) in Fig. 1F).

The label specialization model collection is composed of multiple multi-label clas-
sification models, one for each parent node in the hierarchy, which output conditional
probabilities P(lj |parent(lj)) for children labels. When the output space is a DAG, a label
lj can have multiple parents and, consequently, multiple multi-label models can output
a conditional probability P(lj |parent(lj)). In this case, we consider as P(lj |parent(lj)) the
maximal predicted conditional probability. To predict a label lj for a test example ei, we
then use the product rule as in the case of “child vs. parent label” model.

The label vs. the rest model collection is composed of multiple binary classification
models, one for each label lj that qualifies as most specific annotation. For a test example
ei and a label lj from the subset of most specific annotations, an lj specific model outputs
the probability P(lj) that the label is assigned to the example. In the case of labels that
do not belong to the subset of most specific annotations, the probability is zero.

The labels without hierarchical relations model is a single multi-label classification
model that canoutput probabilities that labels from the subset ofmost specific annotations
are assigned to an example.

The analysis module compares the performances of the five model induction algo-
rithms, based on the predictions output by the annotation module. An algorithm’s per-
formance is measured as the area under average precision-recall curve (AUPRC) [1].
The statistical significance of AUPRC differences is assessed by using the corrected
Friedman test and the Nemenyi post-hoc test [26] (Fig. 1H).

AUPRC is a threshold independent performancemeasure, where precision and recall
points are obtained by changing the value of the threshold t from zero to one with
the step of 0.01. For each value of t, precision and recall values are micro-averaged:

precisiont =
∑p

i=1 TPi∑p
i=1 TPi+

∑p
i=1 FPi

, recallt =
∑p

i=1 TPi∑p
i=1 TPi+

∑p
i=1 FNi

, where p is the number of

labels that qualify as most specific annotations, TP are true positives, FP false positives
and FN false negatives.

The statistical test is performed on a r by k matrix, where r is the number of model
induction algorithms (five in our case), k is the number of cross-validation folds and
the values in the matrix are AUPRCs. The corrected Friedman test determines if there
is at least one algorithm with significantly different performance. For each fold, the test
ranks the algorithms in decreasing order of AUPRC. In case of a tie, an average rank
is assigned. Next, the test averages ranks over the k folds and calculates the Friedman
statistic Q, distributed according to the χ2 distribution with r − 1 degrees of freedom.
The p-value is defined as P

(
χ2
r−1 ≥ Q

)
. If, according to the p-value, the difference

is significant, the Nemenyi post-hoc test is used for pairwise comparisons among the
algorithms. The performance of two algorithms is significantly different if their average
ranks differ by more than a critical distance. The critical distance is computed from r, k
and a critical value for a given significance level (a Studentized range statistic).

3 Experimental Setup

We applied the hierarchy decomposition pipeline on ten data sets, using a unified exper-
imental setup. The unified setup means that all models are random forests of 500 PCTs.
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The size of random subspaces considered at each node is equal to the square root of
the number of attributes, and the five model induction algorithms are evaluated by
performing 10-fold cross-validation.

The ten data sets used are described below. They represent four domains: text cat-
egorization, image categorization, habitat modelling and functional genomics. Eight of
them have a tree-shaped label hierarchy and two a DAG shaped label hierarchy. Data set
statistics are presented in Table 1.

Table 1. Data set statistics. Columns: n = number of examples; ad = discrete attributes; an =
numeric attributes; hn = hierarchy nodes; hl = hierarchy leaves; c-hl = cardinality accounting
for labels that are hierarchy leaves (cardinality is an average number of labels per example); p =
labels that qualify as most specific annotations; c-pc = cardinality accounting for most specific
annotations available to the complete decomposition algorithms; c-ph = cardinality accounting
for most specific annotations available to the hierarchical algorithms; d = maximal depth of the
hierarchy; type = tree or DAG hierarchy.

Data set n ad /an hn hl c-hl p c-pc c-ph d Type

Enron 1,648 1,001/0 56 52 2.85 53 2.87 3.37 3 Tree

Reuters 6,000 0/47,236 100 79 1.19 99 1.46 3.13 4 Tree

ImCLEF07A 11,006 0/80 96 63 1.00 63 1.00 1.00 3 Tree

ImCLEF07D 11,006 0/80 46 26 1.00 26 1.00 1.00 3 Tree

Danish farms 1,893 132/5 70 35 6.27 39 6.74 7.08 3 Tree

Slo. rivers 1,060 0/16 724 492 24.56 637 33.04 50.67 4 Tree

ExprYeast 3,788 4/547 417 161 2.28 194 2.29 4.00 4 Tree

SeqAra 3,718 2/4,448 196 148 0.94 194 1.30 3.32 4 Tree

PP 15,313 2,071/0 1,260 377 0.89 947 2.59 16.67 14 DAG

MPP-I 3,531 0/4,777 826 220 1.32 620 3.30 20.49 13 DAG

Text categorization is a problem of automatic annotation of textual documents with
one or several categories. The Enron data set contains bag-of-words descriptions of
e-mails from the labeled subset of the Enron corpus [4]. Hierarchically organized cate-
gories define genre, emotional tone and topic. Reuters data set contains tf-idf descrip-
tions of stories from the “Topics” category of the Reuters Corpus Volume I (RCV1)
[5]. Hierarchically organized categories are topic-based, e.g., economics, industrial or
government.

Image categorization annotates images with categories that represent visual concepts
the images contain. ImCLEF07A and ImCLEF07D represent medical X-ray images
annotated with parts of the human anatomy and orientations of body parts [7]. The
images are described with edge histograms indicating a frequency and a directionality
of brightness changes in an image.

Habitat modelling studies relationships between environmental variables and the
presence of plants and animals in the environment. The Danish farms data set represents



Hierarchy Decomposition Pipeline 493

habitats of soil microarthropods on Danish experimental and organic farms [6]. The
Slovenian rivers data set represents habitats of aquatic organisms in Slovenian rivers [2].
The tree-shaped hierarchies in both data sets represent parts of the taxonomic hierarchy
that contain habitat-specific species.

Functional genomics annotates genes with their biological functions. The ExprYeast
data set represents Saccharomyces cerevisiae (baker’s yeast) microarray gene expression
levels measured under various experimental conditions, such as heat shock or nitrogen
depletion [3]. The SeqAra data set contains attributes derived from amino acid sequences
of the Arabidopsis thaliana plant genes, such as amino acid ratios, molecular weight
and sequence length [3]. The PP data set represents phyletic profiles, i.e., presence
and absence patterns of gene families (clusters of genes that share function) in 2,071
bacterial and archaeal genomes [8]. TheMPP-I data set represents metagenome phyletic
profiles, i.e., relative abundances of gene families in metagenomes obtained from the
IMG database [9]. The first two data sets are annotated with functions from the tree
shaped hierarchy of FunCat [11] and the last two with functions from the DAG of the
Gene Ontology [12].

4 Results

The analysis has three goals. First, to clarify how model induction algorithms for HMC
problems can be compared. Second, to examine whether there exists a single best per-
forming algorithm for all ten HMC problems. Third, to investigate whether specific
properties of HMC data sets can be related to a type of the best performing algorithm.

4.1 How Model Induction Algorithms for HMC Problems Can Be Compared?

The performance-based comparison of model induction algorithms should be ideally
based on annotations available to all of the algorithms. The pipeline contains two types
of algorithms. The complete decomposition algorithms use only themost specific annota-
tions, while the hierarchical algorithms use additional annotations obtained by enforcing
the hierarchy constraint. To compare the two types of algorithms we aggregate AUPRC
over the subset of labels common to both types, that is, over the labels that qualify as
most specific annotations. However, this step does not guarantee that the comparison is
performed on the common set of annotations.

Distributions of common labels are not necessarily the same in the training sets
created by the complete decomposition algorithms and the hierarchical algorithms. This
property is best illustrated with an example. Suppose that we have a data set annotated
with labels from the hierarchy in Fig. 2A and a derived training set composed of five
examples annotated with most specific annotations as presented in Fig. 2B. The training
set, which illustrates the annotations available to complete decomposition algorithms,
shows that six labels qualify as most specific annotations: “1”, “1.1”, “1.1.1”, “1.1.2”,
“1.2” and “2.2”. When the hierarchical algorithms apply the hierarchy constraint on
those six labels, the training set will look like the one in Fig. 2C. The difference in
distribution of common labels is considerable: the cardinality doubled.
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Fig. 2. Example illustrating differences in distribution of labels common to the complete
decomposition and hierarchical algorithms.

The difference in distribution of common labels can give an advantage to the hierar-
chical algorithms due to additional information from the hierarchy. This property affects
eight data sets with an exception of the two data sets from image categorization domain
(see columns c-pc and c-ph in Table 1) and tends to have higher impact on the data sets
with larger hierarchies.

The presented problem can be addressed by considering only those annotations that
are, at the same time, hierarchy leaves. This approach would, however, ignore many
annotations (Fig. 2D, see columns c-hl and c-pc in Table 1). For example, the cardinality
of the SeqAra and PP data sets would fall below one, although both data sets have at
least one label per example (column c-hl in Table 1).

4.2 Is There a Single Best Model Induction Algorithm Across All HMC Data
Sets?

To answer this questionwe: (1)measureAUPRCm aggregated over the labels that qualify
as most specific annotations (Table 2); (2) measure AUPRCl aggregated over the labels
that qualify as most specific annotations and are, at the same time, hierarchy leaves
(Table 2); and (3) examine whether the differences in AUPRCm and AUPRCl among the
five model inductions algorithms are statistically significant at the significance threshold
of 0.05.

As a statistical significance test, we use the corrected Friedman test on the matrix
where rows are the ten data sets, columns are the five algorithms and values are AUPRCs.
We apply the test separately for each type of AUPRC, using the two matrices in Table 2.
The p-value for AUPRCm is 0.029 and for AUPRCl 0.458. At a significance thresh-
old of 0.05, there are no significant differences in performance considering AUPRCl.
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Table 2. Area under average precision-recall curve aggregated over the labels that qualify as most
specific annotations (AUPRCm) and labels that are hierarchy leaves (AUPRCl). AUPRCs of the
best performing algorithms are shown in bold. Abbreviations: BAS = baseline, CPL = child vs.
parent label, LSP= label specialization, LHR= labels without hierarchical relations, LTR= label
vs. the rest, alg. = algorithms, d. = decomposition algorithms.

Data set AUPRCm AUPRCl

Hierarchical alg. Complete d. Hierarchical alg. Complete d.

BAS CPL LSP LHR LTR BAS CPL LSP LHR LTR

Enron 0.646 0.648 0.657 0.533 0.532 0.596 0.601 0.600 0.594 0.595

Reuters 0.798 0.816 0.797 0.446 0.462 0.668 0.692 0.661 0.632 0.692

ImCLEF07A 0.886 0.891 0.889 0.888 0.898 0.886 0.891 0.889 0.888 0.898

ImCLEF07D 0.872 0.871 0.870 0.872 0.882 0.872 0.871 0.870 0.872 0.882

Danish farms 0.824 0.815 0.825 0.816 0.827 0.828 0.819 0.828 0.830 0.828

Slo. rivers 0.658 0.642 0.657 0.456 0.432 0.504 0.495 0.510 0.509 0.486

ExprYeast 0.465 0.449 0.489 0.407 0.320 0.372 0.381 0.415 0.401 0.347

SeqAra 0.498 0.524 0.488 0.238 0.230 0.381 0.395 0.385 0.381 0.410

PP 0.341 0.349 0.345 0.095 0.097 0.127 0.130 0.129 0.157 0.151

MPP-I 0.497 0.511 0.507 0.348 0.342 0.301 0.472 0.427 0.392 0.398

For AUPRCm, we proceed to the post hoc test (Fig. 3). At the significance level of 0.05,
the post hoc test shows that none of the algorithms perform significantly better that the
rest. Given the results of the statistical test, we confirm the hypothesis that there is no
single best model induction algorithm across all HMC data sets.

child vs. parent label
label specialization

baseline
label vs. the rest
labels without hierarchical relations

critical distance = 2.0092

2 3 4 5 

Fig. 3. Average ranks diagram comparing predictive performance, measured as AUPRCm, of the
five model induction algorithms over the ten HMC data sets. The numbers on the line represent
ranks of the algorithms averaged over the data sets. Better performing algorithms are on the left-
hand side. The algorithms with average ranks that differ by less than the critical distance for a
p-value of 0.05 are connected with a line.
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4.3 CanWe Relate Properties of HMCData Sets to a Type of the Best Performing
Model Induction Algorithm?

The best performing algorithm for a data set is the one that receives the highest rank in
the statistical test (described in Sect. 2, analysis module), and is significantly better than
at least one other algorithm at the significance level of 0.05 (Fig. 4). The second criterion
is not satisfied by any of the five algorithms on the PP and MPP-I data sets (Fig. 4I, J).
Since we cannot determine the best performing algorithm on the two data sets, they are
not going to be used in the analysis.We characterize the best performing algorithm along
each of the two dimensions: single- or multi-label classification algorithm, and hierar-
chical or complete decomposition algorithm. The former dimension indicates whether
the model(s) constructed by the algorithm perform(s) single or multi-label classification.
The latter indicates whether hierarchical constraint is applied.

Data sets are characterized with two groups of properties, the first describing the
hierarchy of labels and the second describing the density of annotations. The hierarchy
is described in terms of the number of nodes and leaves, and a branching factor. Anno-
tations are described through cardinality computed both for annotations available to the
hierarchical and complete decomposition algorithms. The number of annotations avail-
able to the hierarchical, but not to the complete decomposition algorithms is measured
as a difference between the two cardinalities. Finally, we measure a share of incomplete
annotations in most specific annotations. The most specific annotation is incomplete if
it is not a leaf label and can, consequently, be further specialized.

Multi-label classification algorithms perform best on the data sets with large hierar-
chies: they perform the best on the two data sets with the largest hierarchies, ExprYeast
and Slovenian rivers (417 and 724 nodes, Table 3). An average branching factor, which
is an indicator of complexity, is, however, not related in the same way. We expected that
multi-label classification algorithms would perform best on data sets with high cardinal-
ity, but this is not the case. The ExprYeast and Enron data sets have moderate cardinality
(from 2.29 to 4), and a multi-label classification algorithm performs best on the for-
mer and a single-label classification algorithm performs best on the latter. Similarly, the
Danish farms and Slovenian rivers data sets have high cardinality (from 6.74 to 50.67),
and a single-label classification algorithm performs best on the former and a multi-label
classification algorithm on the latter. An exception are the data sets with low cardinality
(less than two) where a single-label classification algorithm always performs best.

Hierarchical algorithms perform better on data sets where they can obtain additional
annotations (by applying the hierarchy constraint), as compared to the complete decom-
position algorithms. They profit evenwhen only half of an annotation on average is added
to examples (Table 4). Interestingly, when the best performing algorithm is a hierarchical
algorithm, it performs significantly better than both complete decomposition algorithms
(Fig. 4A, B, F–H). Furthermore, the presence of incomplete annotations in a data set
is related to the emergence of a hierarchical algorithm as the best performing: When
at least 1% of the annotations in a data set are incomplete, a hierarchical algorithm is
the best choice. Hierarchical algorithms also perform the best on class hierarchies with
more than 100 nodes and an average branching factor higher than three.
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Fig. 4. Average ranks diagrams comparing predictive performance, measured as AUPRCm, of
the five model induction algorithms for each of the ten HMC data sets. The numbers on the line
represent ranks of the algorithms averaged over the ten cross-validation folds. Better performing
algorithms are on the left-hand side. The algorithms with average ranks that differ by less than the
critical distance for a p-value of 0.05 are connected with a line. CD = critical distance = 2.0092.
Abbreviations: BAS = baseline, CPL = child vs. parent label, LSP = label specialization, LHR
= labels without hierarchical relations, LTR = label vs. the rest.
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Table 3. The relation between the size of a hierarchy and emergence of a single- or a multi-
label classification algorithm as the best performing. Columns: hn = hierarchy nodes; hl =
hierarchy leaves; b = average branching factor; c-pc = cardinality accounting for most specific
annotations available to the complete decomposition algorithms; c-ph = cardinality accounting
for most specific annotations available to the hierarchical algorithms; Alg. = algorithm (for the
abbreviations of algorithm names, we refer to Fig. 4).

Data set Hierarchy Annotations Best performing algorithm

hn hl b c-pc c-ph Alg. Multi-label? Hierarchical?

ImCLEF07D 46 26 2.19 1.00 1.00 LTR No No

Enron 56 52 11.20 2.87 3.37 CPL No Yes

Danish farms 70 35 1.94 6.74 7.08 LTR No No

ImCLEF07A 96 63 2.82 1.00 1.00 LTR No No

Reuters 100 79 4.55 1.46 3.13 CPL No Yes

SeqAra 196 148 4.00 1.30 3.32 CPL No Yes

ExprYeast 417 161 1.62 2.29 4.00 LSP Yes Yes

Slo. rivers 724 492 3.11 33.04 50.67 BAS Yes Yes

Table 4. The relation between the amount of additional annotations available to the hierarchical
algorithms and the emergence of a hierarchical or a complete decomposition algorithm as the
best performing. Columns: diff = c-ph - c-pc; ia = percentage of incomplete annotations. For a
description of the rest of the abbreviations, we refer to Table 3.

Data set Annotations Hierarchy Best performing algorithm

diff ia hn hl b Alg. Multi-label? Hierarchical?

ImCLEF07A 0 0% 96 63 2.82 LTR No No

ImCLEF07D 0 0% 46 26 2.19 LTR No No

Danish farms 0.34 0% 70 35 1.94 LTR No No

Enron 0.50 1% 56 52 11.20 CPL No Yes

Reuters 1.67 18% 100 79 4.55 CPL No Yes

ExprYeast 1.71 1% 417 161 1.62 LSP Yes Yes

SeqAra 2.02 27% 196 148 4.00 CPL No Yes

Slo. rivers 17.63 26% 724 492 3.11 BAS Yes Yes

5 Conclusions and Discussion

We introduced the hierarchy decomposition pipeline, a publicly available software tool-
box for comparison of model induction algorithms for hierarchical multi-label classifi-
cation (HMC) problems in the ensemble setting. The pipeline contains five algorithms:
the algorithm that constructs a global model, which predicts the complete hierarchy, two
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partial decomposition algorithms that construct local models, which predict different
edges of a hierarchy, and two complete decomposition algorithms that construct one
or multiple models, which predict subset(s) of hierarchy nodes. The pipeline also con-
tains tools for performance-based comparison of the algorithms, which compute the area
under the average precision-recall curve and perform a statistical test of the differences
in performance.

We applied the pipeline on ten HMC data sets and draw the following conclusions:
First, by comparing the algorithms on a set of common labels, we cannot guarantee

that they will be compared on a set of common annotations. The set of labels common
to all algorithms is composed of those labels that are assigned to at least one example as
the most specific annotation. While the complete decomposition algorithms use only the
most specific annotations, the hierarchical algorithms may assign additional annotations
for the common labels, simply by applying the hierarchy constraint. This issue can be
addressed by comparing the algorithms on a set of common labels that are, at the same
time, hierarchy leaves. However, we should have in mind that by making this choice we
may omit many annotations. The middle ground is to perform both types of comparisons
considering their advantages and disadvantages.

Second, there exists a need for the proposed pipeline, since there is no single best
algorithm for all HMC problems.

Third, the properties of a HMC data set can be related to the type of best performing
algorithm on that data set. Multi-label classification algorithms perform best on data
sets with large hierarchies. Interestingly, high cardinality is not strongly related to the
advantage of multi-label classification algorithms. Hierarchical algorithms perform best
on data sets from which they can obtain additional annotations compared to the com-
plete decomposition algorithms, simply by applying the hierarchy constraint. They also
perform best on data sets with large and complex hierarchies.

The limitation of the analysis that relates the properties of a HMC data set to the
type of best performing algorithm is the small number of data sets in the study. The
limitation can be addressed by performing a simulation that: (1) generates hundreds of
artificial HMC data sets with predefined properties; (2) applies the proposed pipeline on
the data sets to determine the best performing algorithm; and (3) uses the collected data
for meta learning to produce a classifier relating dataset properties to the type of best
performing algorithm. The simulation should consider data sets with both a tree shaped
and a DAG shaped label hierarchy. In this study, we had only two data sets with a DAG
shaped label hierarchy and none of the algorithms performed significantly better than
the rest on those two data sets. They were, consequently, left out of the analysis.

The pipeline can be improved in several directions. While it has been developed
in the ensemble setting to maximize predictive performance on complex HMC data
sets (e.g., functional genomics data sets), it can be adapted to construct single models.
Furthermore, it can be modified to construct ensembles other than random forests, e.g.,
bagging or boosting. Finally, additional research need to be performed to understand
whether it is possible to add stratified cross-validation as an option.
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