
Phenotype Inference from Text
and Genomic Data

Maria Brbić1, Matija Piškorec1, Vedrana Vidulin1, Anita Kriško2,
Tomislav Šmuc1, and Fran Supek1,3(B)

1 Ruđer Bošković Institute, Zagreb, Croatia
2 Mediterranean Institute of Life Sciences, Split, Croatia

3 Centre for Genomic Regulation, Barcelona, Spain
fran.supek@irb.hr

Abstract. We describe ProTraits, a machine learning pipeline that sys-
tematically annotates microbes with phenotypes using a large amount of
textual data from scientific literature and other online resources, as well
as genome sequencing data. Moreover, by relying on a multi-view non-
negative matrix factorization approach, ProTraits pipeline is also able to
discover novel phenotypic concepts from unstructured text. We present
the main components of the developed pipeline and outline challenges
for the application to other fields.
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1 Introduction

With the development of next-generation DNA sequencing techniques, the num-
ber of available microbial genomes has rapidly increased. However, this explosive
growth of genomics data is not followed by the phenotypic annotations of organ-
isms, such as growth at extreme temperatures, resistance to radiation, or the
ability to cause disease in plants, animals or humans. The systematic annota-
tion of organisms with phenotypic traits is of importance for discovering the
associations between genes to phenotypes that would suggest a biological basis
for various traits. Existing databases [7,11] rely on manual annotation of organ-
isms, which results in limited coverage. On the other hand, there is a vast amount
of unstructured data with phenotype descriptions available in scientific articles
and other textual resources. Motivated by this abundance of genomic and of tex-
tual data, we developed ProTraits [2] - a machine learning-based pipeline that
systematically assigns predictions across large number of organisms and phe-
notypes. Along with predicting existing phenotypic labels, ProTraits pipeline
is also able to define novel phenotypic concepts from unstructured text using
a multi-view approach based on non-negative matrix factorization followed by
clustering and manual curation. Here, we briefly describe main components of
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our pipeline and present an overview of results. The proposed approach can eas-
ily be extended to other fields with the abundant unstructured textual data.
The ProTraits database of microbial phenomes is available at http://protraits.
irb.hr/.

2 Methodology

In this section, we describe the main components of the ProTraits pipeline
(Fig. 1): (i) unsupervised phenotype discovery based on multi-view non-negative
matrix factorization; (ii) a supervised machine learning framework for phenotype
inference from textual and genomic data; (iii) a late-fusion based component for
the combination of predictions coming from 11 independent models, and (iv) a
user-friendly web interface providing searchable predictions.

Fig. 1. System architecture of the ProTraits pipeline

2.1 Initial Data

Text documents describing bacterial and archaeal species were downloaded
from six textual resources including Wikipedia, the MicrobeWiki student-edited
resource, PubMed abstracts of scientific publications, PubMedCentral full-texts,
and an additional set of assorted microbiology resources. The initial set of pheno-
type assignments was collected from NCBI, BacMap [11] and GOLD databases
[7]. The set of biochemical phenotypes was collected manually from individual
publications where various microbial species were initially characterized.

2.2 Inferring Phenotypic Concepts

We applied non-negative matrix factorization (NMF), commonly used for topic
discovery tasks, to each text resource separately to discover novel phenotypic
concepts. We then clustered the NMF factors, while requiring that a concept has
to be consistently discoverable in at least three text resources. Since the NMF
algorithm has a stochastic component, we ran the algorithm multiple times with
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different random seeds while also varying the number of factors parameter, in
order to maximize the diversity of discovered concepts. These groups were then
examined by an expert and those describing new phenotypes were retained and
used in the same way as labels collected from the existing databases. In total,
we discovered 113 non-redundant novel phenotypic concepts.

2.3 Phenotype Prediction

In the phenotype prediction task, the learning examples were species and the
class label was the presence/absence of a phenotype in that species. A separate
model was trained for each of the 424 phenotypes and 10-fold cross-validation
used to estimate the accuracy. Once a model was learned, it was applied to the
species with unknown phenotypic annotations. To make the functioning of our
models more interpretable to biologists, we also provide sets of most important
features of all models.

Predictions from textual data. We used bag-of-words representation with tf-
idf weighting of word frequencies across documents assigned to species in a given
text corpus. A Support vector machine (SVM) classifier with a linear kernel was
trained on all combinations of text resources and phenotypes.

Predictions from genome data. We constructed five different genomic repre-
sentations for each microbial species: (i) the proteome composition [1,9]; (ii) the
gene repertoire encoded as presence/absence of Clusters of Orthologous Groups
(COG) gene families [4,6]; (iii) co-occurrence of species across environmental
sequencing data sets [3]; (iv) gene neighborhoods [8] encoded as pairwise chro-
mosomal distances between gene family members; and (v) genomic signatures
of translation efficiency in gene families [5,10]. Again, we trained models on all
combinations of representations and phenotypes. We used the Random Forest
(RF) classifier which we found to outperform other tested algorithms.

Combining predictions. To combine predictions from different models and
provide an interpretable estimate of confidence in each prediction, the confidence
scores of each prediction were converted to precisions, based on cross-validation
precision-recall curves. Precision scores for organisms in the initially unlabeled
set of organisms were calculated via linear interpolation between the neighboring
confidence points and then assigned to both positive and negative class for each
prediction and further adjusted to account for difference in class sizes, ensuring
that the minimum precision of each class is 0, regardless of the number of posi-
tive/negative examples. The systematic validation performed by two experts on
a random sample of 2, 500 predictions showed that the precisions combined using
late fusion schemes agree well with human judgment, particularly when requiring
agreement of two independent models (either text or genomics-derived).

Web interface and results. In summary, ProTraits covers 3, 046 microbial
organisms and 424 microbial phenotypes. It provides predictions across six tex-
tual resources and five independent genomic representations. At the precision
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threshold higher than 0.9, ProTraits assigns ≈545,000 novel annotations, out of
which ≈308,000 are supported in two or more independent predictions. A web
interface at http://protraits.irb.hr/ provides precision scores across 11 individ-
ual predictors and an integrated score calculated using the two-votes late fusion
scheme.

3 Challenges and Conclusions

Training separate classifiers for each of the phenotypes does not scale well in
terms of computation time required, especially for high-dimensional genomic
datasets. However, using existing multi-label classifiers was not straightforward
for our datasets since most of the target values were missing. Another challenge
was collecting initial labels, as this requires tedious manual curation. While the
two existing microbial phenotype databases alleviated this problem in our work,
for other important problems in the life sciences, similar databases may not be
available. Crucially, the input of field experts has allowed us to validate predic-
tions and inferred concepts, demonstrating that our models are trustworthy.
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