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Abstract. In this work, we address the task of phenotypic traits pre-
diction using methods for semi-supervised learning. More specifically,
we propose to use supervised and semi-supervised classification trees as
well as supervised and semi-supervised random forests of classification
trees. We consider 114 datasets for different phenotypic traits referring
to 997 microbial species. These datasets present a challenge for the exist-
ing machine learning methods: they are not labelled/annotated entirely
and their distribution is typically imbalanced. We investigate whether
approaching the task of phenotype prediction as a semi-supervised learn-
ing task can yield improved predictive performance. The results suggest
that the semi-supervised methodology considered here is especially help-
ful when using single trees, especially when the amount of labeled data
ranges from 20 to 40%. Similar improvements can be seen when the
presence of the phenotype is very imbalanced.
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1 Introduction

The most common task in machine learning is supervised learning, where the
goal is to predict the value of a target attribute of an example by using the
values of descriptive attributes. Supervised methods often need a large amount
of labeled data to learn a predictive model with a satisfying predictive per-
formance. However, in many real-life problems, such as phonetic annotation of
human speech, protein 3D structure prediction, and spam filtering, only a few
labeled examples are available to learn from because of the expensive and/or
time-consuming annotation procedures. Contrary to labeled examples, unlabeled
examples are often freely available in vast amounts. For example, human speech
can be recorded from radio broadcasts, while DNA sequences of proteins can
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be extracted from gene databases. Semi-supervised learning (SSL) emerged as
an answer to the problem of labeled data scarcity [1], with an idea to exploit
freely/easily available unlabeled examples to get better predictive performance
than the one achieved using labeled data alone.

In this work, we are concerned with the task of microbial phenotype pre-
diction. Phenotypes are defined as variations in observable characteristics of an
organism. Microbial organisms display a large diversity of possible phenotypic
traits, such as ability to inhabit different environments, adaptation to extreme
conditions and association to different hosts. The annotation of organisms with
phenotypes is important for understanding the genetic basis of phenotypes. It
often requires expensive experimental measurements and time-consuming man-
ual curation, hence there is a huge amount of unlabeled organisms. On the
other hand, phenotypes can be efficiently predicted from genome [2–5] and
metagenome data [6].

Thanks to the emergence of DNA sequencing technology, the number of
sequenced genomes is rapidly increasing, making unlabeled data easily available.
This makes the problem of phenotype prediction well suited for semi-supervised
learning. In this work, we explore whether better predictive performance can be
achieved with semi-supervised machine learning methods than with supervised
methods that have been used for this task in [7]1, namely classification trees
and random forests. To the best of our knowledge, this is the first application of
semi-supervised learning for microbial phenotype prediction.

In this work, we compare the predictive performance of supervised and semi-
supervised classification trees and random forests thereof [8] to predict 114 phe-
notypes of 997 microbial organisms. These datasets pose interesting challenges
for existing machine learning methods because the annotations are not complete
and the available datasets are imbalanced. To this end, we investigate whether we
can benefit from using semi-supervised learning under these difficult conditions.
In a nutshell, the results reveal that the semi-supervised classification trees can
improve the predictive performance over supervised classification trees in cases
where the amount of labeled data is in the range 20–40% and for phenotypic
traits that are not extremely rare.

The rest of this paper is organized as follows. Section 2 describes the semi-
supervised methods used in this study, while Sect. 3 describes the data used for
phenotype prediction. Section 4 specifies the experimental design. The results
of the empirical investigations are presented and discussed in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Methods

In this work, we consider semi-supervised classification trees and semi-supervised
random forests [8], which are based on the predictive clustering trees (PCTs) [9]
and ensembles thereof [10]. PCTs view a decision tree as a hierarchy of clusters,

1 Phenotype predictions from [7] are available at protraits.irb.hr.

http://protraits.irb.hr
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where the top-node corresponds to one cluster containing all the data. This clus-
ter is then recursively partitioned into smaller clusters while moving down the
tree. Semi-supervised PCTs are implemented in the CLUS system [11] (imple-
mentation available at http://kt.ijs.si/jurica levatic/). In this section, we briefly
describe semi-supervised trees and random forests, while for more details we
refer the reader to the work of Levatić et al. [8].

Supervised classification trees evaluate the quality of splits on the basis of
the class labels, by using, for example information gain or gini impurity as a
quality measure. Consequently, the resulting clusters (i.e., groups of examples
defined by splits in the tree) are homogeneous only with respect to the class label.
Semi-supervised PCTs [8], on the other hand, measure the quality of splits con-
sidering both the class labels and descriptive attributes. Therefore, the resulting
clusters are homogeneous with respect to both the descriptive attributes and the
class labels. Note that, only the descriptive attributes are known for unlabeled
examples, thus, such semi-supervised trees can exploit them during the tree
construction - contrary to supervised trees. The rationale behind the described
semi-supervised classification trees is the semi-supervised cluster assumption [1]:
If examples are in the same cluster, then they are likely of the same class.

The semi-supervised PCTs are based on the standard top-down induction of
decision trees (TDIDT) algorithm (see Table 1), which takes as input a set of
examples E and outputs a tree. The heuristic score (h) that is used for selecting
the tests (t) to put in the internal tree nodes is reduction of impurity caused by
partitioning (P, Table 1, line 3 of the BestTest procedure) the examples according
to the tests.

In supervised PCTs, the impurity for each set of examples E is calculated as
the gini impurity (Table 1, line 5 of the BestTest procedure):

Impurity(E) = Gini(E, Y ). (1)

Table 1. The top-down induction algorithm for decision trees construction.

http://kt.ijs.si/jurica_levatic/
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As mentioned before, to identify the best splits, the impurity function of
semi-supervised PCTs takes into account both the target attribute (i.e., the
class labels) and the descriptive attributes. This is achieved by changing the
equation for the calculation of impurity for supervised PCTs (Eq. 1). Impurity
of a set of examples E (which may contain labeled and unlabeled examples) is
calculated as a weighted sum of impurities over the target attribute (Y ) and
impurities over the descriptive attributes (Xi):

ImpuritySSL(E) = w · Impurity(El, Y ) +
1 − w

D
·

D∑

i=1

Impurity(E,Xi), (2)

where E = El ∪ Eu is the dataset available at a node of the tree, D is the number
of descriptive attributes, Xi is the ith descriptive attribute, and w ∈ [0, 1] is a
weight parameter.

The impurity of the target attribute Y is calculated as gini impurity over
a set of labeled examples El. Differently from the target attribute, which is
nominal, the descriptive attributes can be either nominal or numeric, therefore,
the two cases are considered separately: if the attribute is nominal as a measure of
impurity gini impurity is used, whereas, if the attribute is numeric, as a measure
of impurity variance is used.

The weight parameter w in (2) controls how much the target side or the
descriptive side contribute to the calculation of the impurity. Consequently, this
controls how much the unlabeled examples affect the learning of semi-supervised
PCTs. Namely, depending on the values of the w parameter, semi-supervised
PCTs can range from fully supervised trees (i.e., w = 1) to completely unsu-
pervised trees (i.e., w = 0). This aspect is important since unlabeled examples
can sometimes cause semi-supervised algorithms to perform worse than their
supervised counterparts [12–14]. The w parameter acts as a safety mechanism
of semi-supervised PCTs, enabling them to control the influence of unlabeled
examples and adapt to a given dataset.

If no acceptable test is found because some stopping criteria is met (e.g.,
minimum number of examples in the leaf has reached the user predefined value,
the variance reduction is not relevant etc.) then the algorithm places a leaf node
at that position. In each leaf node, the prototype for the examples belonging
to that leaf node is calculated (by using the function Prototype(E) from the
InduceTree procedure in Table 1 at line 10) and stored.

By using semi-supervised PCTs, it is possible to build semi-supervised ran-
dom forests. A random forest [15] is an ensemble of trees, where diversity among
the trees is obtained by making bootstrap replicates of the training set, and addi-
tionally by randomly selecting the subset of descriptive attributes used to evalu-
ate the splits. Random forests often substantially improve the predictive perfor-
mance of single trees, however, the interpretability aspect of trees is lost. Semi-
supervised random forests of PCTs are built by using semi-supervised PCTs as
members of the ensemble, instead of using supervised PCTs. In semi-supervised
random forests, the bootstrap sampling procedure is modified to perform
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stratified bootstrap sampling (considering the proportions of labeled and unla-
beled examples) to avoid having bootstrap samples consisting only of unlabeled
examples.

We next analyze the computational complexity of semi-supervised PCTs.
We first recall the procedures that contribute to the computational complex-
ity of supervised PCTs. These are as follows: sorting the values of D descrip-
tive attributes (O(DN logN)), calculating the best split for T target variables
(O(TDN)), and applying the split to the N (labeled) training examples (O(N)).
Assuming that the depth of the tree is in the order of O(logN) [16], the total
computational complexity of constructing a single PCT is O(DN log2 N) +
O(TDN logN) + O(N logN).

We then consider what changes from supervised PCTs to semi-supervised
PCTs. This is, first, the value of N : In the case of semi-supervised PCTs, the
number of training examples is equal to the number of labeled and unlabeled
examples combined, i.e., N = Nl + Nu, instead of N = Nl. Second, SSL-PCTs
consider both D descriptive attributes and T target variables when the split
is calculated, thus the complexity of this step is O((T + D)DN). The total
computational complexity of learning a single SSL-PCT is thus O(DN log2 N)+
O((T+D)DN logN)+O(N logN). This cost is then linearly extended to random
forests of PCTs similarly as in [10]. Additionally, one should also consider the cost
for obtaining the optimal value for the w parameter, which is usually performed
using an inner cross-validation procedure.

3 Data Description

Prokaryotic genome sequences and gene annotations were downloaded from the
NCBI Genomes database and COG/NOG gene families were downloaded from
eggNOG 3 [17]. In our analysis, we considered species that have a genome qual-
ity score greater or equal to 0.9 (out of 1) [22]. Higher score corresponds to
the higher level of completeness of sequenced genome data, where scores of 0.8
or higher indicate that a genome can be safely used for standard comparative
genomics analysis. Phenotype annotations are NCBI+Bacmap labels as in [7],
collected from the NCBI microbial genome projects list (‘lproks0’ table) and
from the BacMap database [18], in total 114 different phenotypic traits. We
considered only species having at least one assigned phenotype label, resulting
in 997 species. Each example corresponds to one species labeled with a set of
available phenotypic traits. For each species, the labels correspond to presence or
absence of traits, thus, the task of phenotype prediction corresponds to a binary
classification problem.

The labelling is, however, not exhaustive: For most of the phenotypes, only
30% of species are labeled (Fig. 1a). Hence, the dataset at hand contains unla-
beled data, which can be exploited with semi-supervised methods. The class dis-
tribution of most of the phenotypes is unbalanced (Fig. 1b): Many traits appear
at less than 10% of species, e.g. radiation-resistance phenotype and ability to
withstand extremely high (hyperthermophilic organisms) or extremely low tem-
perature (psychrophilic organisms).
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In all experiments, we used the gene repertoire representation [2]. The fea-
tures describing the species were encoded as the presence/absence of the clus-
ters of orthologous (COG) and non-supervised orthologous (NOG) groups of
proteins, resulting in the 80576 binary valued features. In order to reduce the
dimensionality of the feature set we applied principal component analysis (PCA)
as a preprocessing step and retained principal components explaining 90% of the
variance. This resulted in 526 features, i.e., principal components.
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Fig. 1. (a) Histogram of the amount of labeled (relative to unlabeled) examples for
each phenotype. (b) Histogram of the majority class distributions of phenotypes.

4 Experimental Design

We learn a separate model for each phenotype, transforming the problem of
phenotype prediction into 114 binary classification tasks. We then approach these
tasks with two learning paradigms: supervised and semi-supervised learning. In
other words, we learn predictive models in the form of supervised classification
trees (PCTs) and semi-supervised classification trees (SSL-PCTs) as well as
supervised random forests and semi-supervised random forests. Performance was
estimated with 10-fold cross validation procedure. The predictive performance
reported in the results is the average of the performance values obtained from
the 10 folds.

In the experiments, both supervised and semi-supervised trees are pruned
with the procedure used in C4.5 classification trees [19]. The weight parameter
w of semi-supervised algorithms was chosen from the set {0, 0.1, . . . , 0.9, 1} by
using internal 3-fold cross validation on the labeled part of the training set. We
construct random forests consisting of 100 trees. The trees in random forests are
not pruned and the number of random features at each internal node is set to
the square root of the number of features, which in our case amounted to 23.

Next, we compare the performance of semi-supervised PCTs and semi-
supervised random forests to their supervised counterparts. For every pheno-
type, examples with unknown labels were used as unlabeled data for learning
the semi-supervised PCTs and ensembles thereof.
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Furthermore, we investigate the influence of the amount of annotated pheno-
types on the performance of the semi-supervised methods. More specifically, we
analyze the performance of the predictive models across the different percent-
ages of annotated phenotypes. Moreover, we juxtapose this influence with the
influence of the imbalance of the class labels.

We also investigate how the value of the w parameter affects semi-supervised
methods. To do this, we randomly select 4 phenotypes and learn semi-supervised
models (both single PCTs and random forests) to predict them for all w in
{0, 0.1, . . . , 0.9, 1} the resulting performances. Additionally, we analyze the per-
formance of predictive models for different values of the w parameter selected
by the internal cross validation.

Finally, in our evaluation scenario we use truly unlabeled data, and not unla-
beled data that is obtained by removing the labels as it is usually done in most
SSL studies. Therefore, for each phenotype we use all the available unlabeled
data. We have performed an analysis of the influence of the amount of the unla-
belled data in [8]. The study revealed that the advantage of semi-supervised
classification trees over supervised trees is dependant more on the dataset at
hand, rather than on the amount of unlabeled data used, i.e., if the SSL algo-
rithm wins, it is likely to win for different amounts of unlabeled data (on that
dataset).

5 Results and Discussion

5.1 Predictive Performance

The performances of predicting 114 microbial phenotypic traits with super-
vised and semi-supervised trees and random forests are presented in Fig. 2.
Because class distribution was very imbalanced for some phenotypes, we used
F1 score (harmonic mean of precision and recall) in addition to accuracy to
measure the performance. We can observe that for many of the traits, semi-
supervised algorithms outperform their supervised counterparts, suggesting that
semi-supervised methods can successfully exploit unlabeled data and more accu-
rately predict microbial phenotypes. The advantage of semi-supervised meth-
ods is, however, not observed for all phenotypes. This is expected, since sev-
eral researchers found that the success of semi-supervised methods is, in gen-
eral, dataset dependent [20]. In other words, it cannot be expected that semi-
supervised methods will win against supervised ones for all cases. Furthermore,
several researchers have found that semi-supervised learning may sometimes per-
form worse than supervised learning [12–14]. The numbers of wins, ties and losses
of semi-supervised algorithms compared to their supervised counterparts in accu-
racy and F1 score can be seen in Table 2. Ties were results where the difference
in performance was smaller than 0.01.

Our results also suggest that improving (with unlabeled data) a supervised
random forest is a harder task than improving over a supervised tree: The num-
ber of wins of semi-supervised random forests is lower than the number of wins
of semi-supervised PCTs. This observation complies with previous findings [8].
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Fig. 2. Each dot represents the performance on one phenotype of supervised and semi-
supervised methods. Values above the diagonal (dashed line) denote that the semi-
supervised algorithm performed better. Darker color means greater density of dots.
(Color figure online)

Table 2. Numbers of wins, ties and losses of semi-supervised algorithms compared to
their supervised counterparts.

PCT:Acc PCT:F1 RForest:Acc RForest:F1

Wins 62 50 3 16

Ties 44 15 91 58

Losses 8 49 20 40

We consider that this is due to the fact that ensembles are very powerful pre-
dictive models, which are able to exploit all the information in a given (labeled)
dataset and approach the learnability borders of a given domain closer than a
single predictive model. Thus, arguably, random forests do not benefit so much
from additional information that unlabeled data bring, as compared to single
trees.

We further analyze the results with the goal to identify phenotypes that
are suitable for prediction with semi-supervised methods. The amount of avail-
able labeled data (relative to unlabeled) is an important factor for the perfor-
mance of semi-supervised methods [8]. We therefore analyze the results from
that aspect (Fig. 3). We can observe that semi-supervised single trees perform
better with smaller amounts of labeled data according to accuracy and F1 score,
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Fig. 3. The numbers of wins, ties and losses of semi-supervised PCTs and random
forests versus their supervised counterparts, achieved for phenotypes with different
amounts of labeled examples.

while supervised single trees have better F1 scores on phenotypes with a lot of
labeled examples (over 80%). Supervised and semi-supervised Random forests
are mostly tied, especially in terms of accuracy, however losses are more common
than wins.

Recall that many of the phenotypes have very unbalanced classes (Fig. 1b).
We next analyze whether the imbalance of the classes affects the performance
of semi-supervised methods (Fig. 4). Interestingly, we can see that the semi-
supervised methods achieve most wins in F1 score on phenotypes with the high-
est class imbalance. This holds for both single trees, where losses are more com-
mon than wins when the proportion of the majority class is less than 95%, and
random forests, where the number of wins on the most imbalanced targets is
almost the same as the number of losses, even though losses are far more com-
mon overall. Less surprisingly, we can also see that the vast majority of ties
comes from phenotypes with the highest class imbalance.

5.2 Influence of the w Parameter

Figure 5 shows the accuracy of semi-supervised methods with different values
of the w parameter for 4 randomly selected targets (phenotypes). We can see
that in some cases its influence is minimal (e.g., random forests on target 2) but
more often we need to select the right value for w to improve the performance
over supervised methods. The best performance is achieved with different values
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Fig. 4. The numbers of wins, ties and losses of semi-supervised PCTs and random
forests versus their supervised counterparts, achieved for phenotypes with different
proportion of the majority class.

Fig. 5. The performance of semi-supervised methods for various values of w for 4
random phenotypes. The dashed lines represents the performance of supervised PCTs
while the dotted line shows the performance of supervised random forests.
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of the parameter, indicating that it should be tuned for every dataset. This is
consistent with previous results on this topic [8] and the reason why we used
internal cross validation to select it.

We also look at the numbers of wins, ties and losses according to the w
selected (Fig. 6). Because the performance was measured with 10-fold cross vali-
dation and a different w was selected for each fold, we here compare the perfor-
mances on each fold and not aggregated as before.

First, we note that for single trees w = 0 and w = 1 were the most common
selections. Interestingly, when w = 0 is selected, accuracy is improved in most
cases while the F1 score is close to even. Ties are most common for w = 1, which
is to be expected. For random forests w = 1 is selected almost always, which
contributes to the high number of ties in performance observed in the results
previously.

Fig. 6. Numbers of wins, ties and losses for different values of the w parameter selected
by the internal cross validation.

6 Conclusions

In this work, we approach the task of phenotypic traits prediction using methods
for semi-supervised learning. This task is important to understand the genetic
basis for appearance of specific phenotypes. More specifically, we consider 114
datasets with different phenotypic traits referring to 997 microbial species. The
datasets are not completely labelled and different amount of annotation is avail-
able for the different traits.

We investigate whether approaching the task of phenotype prediction as
a semi-supervised learning task can yield improved predictive performance.
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More specifically, we learn supervised and semi-supervised classification trees
as well as supervised and semi-supervised random forests of classification trees.
We then compare the performance of predictive models learned using supervised
and semi-supervised methods.

The result suggest that the semi-supervised methodology considered here
improves the accuracy of single trees and also their F1 score when the amount
of labeled data ranges from 20 to 40%. Similar improvement can be seen when
the presence of a phenotype is very imbalanced (proportion of the majority class
over 95%). Improvement of random forests was rarer but also more common on
previously mentioned groups of phenotypes. In applications where interpretable
models are needed, semi-supervised classification trees should be favored over
the supervised classification trees. We also showed that the performance of semi-
supervised methods is sensitive to the value of the w parameter and that it should
be tuned to each dataset.

We plan to further extend this work along several dimensions. To begin
with, we plan to use phenotypes from other sources, specifically phenotypes from
GOLD database [21] and especially biochemical phenotypes from [7] where the
labeled examples are extremely scarce. Furthermore, we plan to consider other
feature spaces, namely the proteome composition, gene neighborhoods and trans-
lation efficiency representations [7]. Next, we will compare the approaches pre-
sented here with other methods used for phenotype prediction including, but not
limited to, SVMs and semi-supervised SVMs. Note that, considering the number
of datasets considered here, such experiments will require massive computational
power. Finally, we can treat the problem as a multi-label classification problem
and obtain a partially labelled dataset that can be then approached from this
perspective.
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2.0-FIŠ-52900”, implementation of the operation no. C3330-17-529008).

References

1. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised Learning, vol. 2. MIT Press,
Cambridge (2006)

2. MacDonald, N.J., Beiko, R.G.: Efficient learning of microbial genotype-phenotype
association rules. Bioinformatics 26(15), 1834 (2010)
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