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Abstract. In this work we compare different information fusion ap-
proaches in the context of large-scale multi-label classification problems,
typical today in bio-domains: early fusion, late fusion and hybrid fusion
approach. The experiments are performed on two novel large-scale classi-
fication datasets for gene function prediction and prokaryotic phenotype
prediction. Both datasets are based on descriptors coming from a number
of different representations of biological entities. The results reveal that
the fusion approaches exploiting complementarity are best suited for dif-
ficult annoation problems featured in complex datasets from bio-domains
for which individual classifiers perform well only locally.
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1 Introduction

Combining classifiers for information fusion [1], [2], [3] is an important topic
in the era of information overload present in the majority of technological and
scientific domains, from multimedia systems to life-sciences. In particular, in
molecular and systems biology multitude of omics approaches are used in order
to explain complex roles and associations between cell constituents, and machine
learning methods are used as tools for knowledge discovery, either for annotating
entities with typically non-exclusive roles (e.g. protein function prediction), or in
searching for the important patterns, interactions and representations of entities
for the particular problem at hand. The importance of machine learning is best
seen through a number of predictive challenges, some of which are repetitive
regular events such as CASP and CAFA. Here are some features accompanying
discovery problems in genomics:

1. Predictive performance is typically optimized to maximize predictions at
certain precision threshold, and the final model can refrain from making a
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decision when certain precision is not guaranteed. This predictive setting is
actually close to that of information retrieval in which metrics uch as F-
measure, Area Under Precision Recall Curve (AUPRC) or recall@precision
are used.

2. Predictive problems often involve multi-label classification or structured out-
put prediction, where the output structure can be in the form of taxonomy
or ontology showing the need for tools that exploit relations between labels.

3. Complex problems in this domain often include a number of different repre-
sentations drawn from at least partially independent views. Overall dimen-
sionality of these representations, in terms of the number of features, their
relevance for the target and their mutual independence are the major chal-
lenges with respect to the annotation problems. Therefore, it is important
to have efficient and reliable methods that can exploit individual contexts
and their interactions.

The last feature can be handled using classifier fusion approaches that exploit
complementarity on a feature or classifier level. In this work we evaluate differ-
ent fusion approaches in the context of two large scale predictive problems: gene
function prediction (GFP) and prokaryotic phenotype prediction (PP), address-
ing all of the specific requirements mentioned above. Evaluation methodology
provide us a detailed picture of driving mechanisms behind the predictive perfor-
mance of different approaches. The main contribution of this work are insights
related to the importance of fusion mechanisms and their capability to exploit
advantages of different representations used to describe entities of underlying
problems.

2 Related Work

Multi-classifier systems, classifier ensembles and meta-learning approaches have
been important topics in the machine learning field for several decades. Informa-
tion fusion is closely related to these topics. The evolution and adaptation of the
well known techniques and approaches in this field is of high importance in the
context of complex, distributed and streaming data environments. Concepts of
fusion and multi-classifier combination techniques are covered extensively in the
reviews [1], [3], [4], and have been important topics at the relevant conferences
in the field of data mining and machine learning.

Different aspects are important when optimizing combination of modalities,
but one most considered is the level at which fusion of representations is per-
formed: in early fusion predictive model is built using all feature sets or repre-
sentations together to make a single decision model; contrary to that, late fusion
approaches deal with combining models learnt separately on different features
sets or representations. Each of these approaches has their own advantages. Early
fusion approach can make use of interactions between basic features from differ-
ent representations, improving both understanding and predictive performance,
while late fusion approaches can combine outputs of different classifiers exploit-
ing the same representation on a decision level. Moreover, combining individual



decisions from possibly complex individual representations offers scalability and
allows us to use the most suitable methods for analyzing each single representa-
tion, thus providing more flexibility than the early fusion.

An obvious extension that combines the strengths of both approaches is the
hybrid fusion, which in the simplest variant, combines early fusion model with
the individual representation models using late fusion approaches.

In the majority of analysis reported in literature empirical results demon-
strate better performance of late fusion methods in comparison to early fusion.
Late fusion methods exploit additional level of complexity through another layer
of decision making, i.e. combination of multiple baseline (feature subset) mod-
els. Although the power of ensembles approaches has been both theoretically
and empirically proven to be related to at least partial independence of mod-
els, the strong and definite connection between different ensemble diversity and
accuracy of the ensemble seems to be lacking [5].

Recently, in paper by [6] the authors illustrate the connection between im-
provement of ensemble classifiers based on the relative independence of their
false-positive prediction patterns. In their study they used recall at predefined
precision level as a measure to compare classifiers’ performances. This mea-
sure is very well suited for information retrieval, but it is also aligned with the
knowledge discovery tasks. We show in this work that the power of late fusion
approaches is most effective in the setting where strong predictive performance
of individual classifiers (or descriptor sets) is of very local character. Further-
more, we show that in this setting that there is a strong correlation between
recall at predefined precision threshold and the diversity of classifiers calculated
using their individual performances.

3 Fusion approaches

In the early fusion setting feature sets from the individual representations are
all joined into one dataset from which a single classifier is constructed. This
type of fusion should generally better exploit interactions between features from
different representations.

On the other hand, late fusion is performed by constructing a separate clas-
sifier for each of the individual representations and then fusing their predictions.
Our pipeline implements five different late fusion approaches: one vote, two votes,
three votes, consensus [7] and weighted voting [8].

Let C = (ci)
N
i=1 be a sequence of confidence scores of N individual classifiers

and let S = (si)
N
i=1 = sort(C) denote a sequence arranged in ascending order i.e.

si ≤ si+1. The one/two/three votes approaches calculate the fused confidence
scored of the class yj :

c1vote(yj) = sN (yj); c2votes(yj) = sN−1(yj); c3votes(yj) = sN−2(yj) (1)

Consensus score of a label yj is calculated using the following formula:

ccons(yj) = 1−
N∏
i=1

(1− ci(yj)) (2)



The weighted voting score of a label yj is calculated as follows:

cwv(yj) =

N∑
i=1

wici(yj), (3)

where wi denotes weight assigned to the classifer i and:

N∑
i=1

wi = 1 (4)

We calculated weight as Area Under Precision-Recall Curve (AUPRC) estimated
in the cross-validation setting and normalized to sum to 1.

Finally, hybrid fusion performs late fusion on the predictions from the indi-
vidual classifiers and the early fusion classifier.

4 Experimental Setup

In this section we start by introducing problems and respective representations
used in this work. Further, we explain the general scheme of experiments designed
to give us an answer to our main question: which fusion approaches work best
for the types of problems we solve in this work, while also providing intuition
when and why. Next, we present the experimental methodology and discuss the
evaluation measures used in the experiments.

4.1 Datasets

Gene function prediction. Five datasets represent GFP methods based on
semantically distinct feature sets (Table 1, details in [9]). All datasets have com-
mon set of 15,308 instances representing eggNOG clusters of genes [10] and are
labeled with 935 gene functions from Gene Ontology (GO) [11].

Phenotype prediction. Phenotype prediction datasets are constructed using
six different representations (Table 2, details in [12]). Each representation rep-
resents one dataset with a set of 703 instances and 72 labels. Each instance
corresponds to one prokaryotic organism labelled with a set of phenotypic traits.

4.2 Methodology

The input to our computational pipeline is the group of datasets that describe
the same concept but with distinct feature sets. First, in order to reduce the
dimensionality of the feature sets we applied principal component analysis (PCA)
on each of the datasets separately and retained principal components (PC) that
explain 90% of the variance. We divided our data into training (consisting of
2/3 learning instances) and test sets (1/3 instances) using stratified sampling.



Table 1. Gene function prediction datasets.

Dataset # features # PC Features description

Phyletic profiles (PP) 2071 352 Features are genomes and feature values represent pres-
ence/absence of cluster member genes in genomes.

Empirical kernel map
(EKM)

8447 1552 Features are gene clusters and feature values represent
minimal distance between gene sequence pairs, where one
sequence is from instance and another from feature clus-
ter. Distance is measured as e-value.

Conserved gene neigh-
borhood (CGN)

5891 1411 Features are gene clusters and feature values represent
average log-distance (in nucleotides) between genes from
instance and feature cluster pairs averaged over genomes.

Translation efficiency
profiles (TEP)

2071 1449 Features are genomes and values represent maximal pre-
dicted level of cluster member genes expression.

Biophysical and protein
sequence properties
(BPS)

1170 296 Features represent various gene sequence statistics as de-
scribed in [13]. Statistics are computed on a gene level
and averaged between cluster member genes.

Table 2. Phenotype prediction datasets.

Dataset # features # PC Features description

Text-mining 95663 438 Bag-of-words representations of documents describing
bacterial/archael species collected from the scientific lit-
erature and the broader World Wide Web

Amino acid content 420 3 Amino acid and di-amino acid frequencies of a proteome
Pairwise co-occurrences 1235 33 Pairwise co-occurrences of species in metagenomes [14]
Phyletic profiles 80576 393 Presence/absence of the clusters of orthologous groups

(COGs) of proteins
Conserved gene neigh-
borhood

44850 366 Log pairwise chromosomal distance in nucleotides be-
tween pairs of 300 frequently occurring COG gene fam-
ilies

Translation efficiency
profiles

990 263 Codon usage biases of COG gene families across 606
genomes, measured using the MILC method [15]

In the early fusion setting, all feature sets were combined and given as an input
to a single early fusion model (EF). In the late fusion setting, individual models
are constructed for each of the feature sets (FS) separately. In order to access
performance of indvidual classifiers necessary for the weighted voting approach,
we used a cross-validation setting. The hybrid fusion model was built in the
same way as the late fusion one, but also using the early fusion model as a
classifier. Finally, all models are deployed on the test set instances. Figure 4.2
gives a general outline of computational experiments performed on each of the
problems discussed in this work.

Governed by the principle of the best trade-off of accuracy, efficiency and
robustness, we used random forests [16] as a classification algorithm. Random
forests have been used on biological data and the evaluation shows that they are
able to produce state-of-the-art annotation results [9] [23] [24]. Since label spaces
of gene function prediction (GFP) and phenotype prediction (PP) problems
have different properties, we used different versions of the algorithm. In order
to exploit hierarchical structure of the labels in the GFP problem, we used
random forests version of CLUS-HMC [17], [18]. CLUS-HMC is the algorithm
for hierarchical multilabel classification based on the framework of Predictive
Clustering Trees [19]. CLUS-HMC was run with the default parameters, except



for these settings: decision tree pre-pruning was used to prevent the algorithm
to form a leaf node when the number of instances in the node is <5; forest size
was set to 200 trees; size of a feature subset for random forests was set to square
root of the total number of features. For the PP problem where the multi-label
target side is flat, we used FastRF, a fast and efficient implementation of the
random forest algorithm in WEKA [20]. The number of trees was set to 500. For
this setting we applied binary relevance method that corresponds to learning
one classifier for each label separately. This leads to a notable difference from
CLUS-HMC which is able to produce one global model over the whole hierarchy
of labels. Finally, it is important to note that diversity of individual models in
the fusion ensemble is the consequence of the use of different feature sets given
in Tables 1 and 2 in building individual classifiers of the fusion ensemble.

Fig. 1. General schema of computational experiments performed in this work.

4.3 Evaluation

Predictive performance of different fusion approaches was measured on a sepa-
rate test set, composed of one third of the instances. We used two performance
measures that rely on a precision-recall curve: (i) Area Under Precision Recall
Curve (AUPRC), and (ii) recall at some predefined precision level (R@P) which
represents the part of the precision-recall curve at some (high) precision level.
The latter measure was used to emphasize the importance of having predic-
tions with high level of precision which is especially important in the context of
annotation for omics data.

A single PR curve was computed by averaging label-specific curves, which
corresponds to the averaging procedure known as macro-averaging in a multi-
label machine learning setting. It is common to report micro beside macro-
averaged measures, but micro-averaging is not appropriate in the setup with



highly unbalanced classes where interesting classes are typically those with the
least positive examples. For example, a specific label predicted from the bottom
of the GO ontology is more interesting for a domain expert than the label pre-
dicted higher in the ontology. In such settings, micro-averaging would equally
weight examples and thus, averaged performance scores would mainly represent
the performance on less interesting general labels. In contrast, macro-averaging
equally weights labels, enabling interesting specific classes to influence the aver-
age performance score.

Statistical comparison of fusion approaches was performed by using the cor-
rected Friedman test and the post-hoc Nemenyi test [25]. The Friedman test is
a non-parametric test for multiple hypothesis testing. For each label, this test
ranks the fusion approaches according to AUPRCs measured for this specific
label. The best approach is ranked as the first and in the case of ties an average
rank is assigned. The test compares approaches by comparing ranks averaged
over all labels and calculates Friedman statistic distributed according to the χ2

F

with k−1 degrees of freedom, k being the number of fusion approaches. In cases
where at least one approach performed significantly different than the rest we
performed Nemenyi test that shows where that difference lies. We present the
results of Nemenyi test using average ranks diagrams [25].

Diversity in classifier ensembles is measured as a disagreement between clas-
sifiers in terms of correct/incorrect predictions. Different pairwise diversity mea-
sures have been proposed in literature [5], while the averaged statistic is typically
calculated by averaging over all pairs of classifiers. As the most appropriate mea-
sure to characterize diversity in our setting, we chose the disagreement measure
[21] defined as the ratio between the number of predictions on which classifiers
disagree and the total number of predictions:

Disagreement(i, j) =
N10 +N01

N11 +N10 +N01 +N00
, (5)

where N10 denotes the number of predictions on which classifer i is correct
and classifier j is incorrect; the same applies vice versa. Since we deal with
highly unbalanced classes, the diversity measure was calculated only on positive
examples.

In order to investigate the complementarity in the context of fusion perfor-
mance in more detail, we assessed the performance of fusion approaches in the
respect to the generality of labels. The generality was measured using informa-
tion content (IC) [22] computed from label frequency. Higher IC is related to
the more specific labels which are usually more difficult to predict, but more
valuable to the domain experts.

4.4 Experiments

In order to investigate which of the fusion approaches performs best and how is
the performance related to the diversity of individual classifiers, we structured
our experiments in the following manner: (i) we computed macro-averaged per-
formance measures for each of the individual classifiers and fusion approaches



across three levels of difficulty; (ii) we looked at the relationship between diffi-
culty and diversity of individual classifiers for EF, LF and HF approaches; and
(iii) to examine complementarity of EF, LF and HF we measured improvement
over a baseline. Since in our experiments LF-three votes approach is a proxy of
majority voting and a solution that fosters consensus of classifiers rather than
complementarity, we used it as a baseline.

5 Results and discussion

Performances of individual classifiers and different fusion approaches for GFP
and PP problem are shown in Table 3 and Table 4, respectively. Performances are
measured using average AUPRC and recall at 70% precision threshold. Results
are structured to show performance for different label generality levels defined by
problem the specific IC intervals (general, medium and specific; equal number of
labels per bin). One obvious difference between the GFP and PP problems is that
the average performance of individual classifiers for the GFP problem is much
lower than for the PP problem. This is not unexpected since the GFP annotation
is more difficult problem with more than an order of magnitude larger label
space. Average results in Tables 3 and Table 4 are accompanied with statistical
comparison of fusion approaches through average ranks diagrams across label
generality levels shown in Figure 2.

More detailed analysis reveals different trends between fusion approaches
across label generality levels. For the GFP problem, weighted voting approach
and consensus scheme are clear winners over all generality levels, while late
fusion and hybrid fusion approaches are consistently higher than the early fu-
sion approach. The situation is different for the PP problem: early fusion gives
slightly better results than late fusion and hybrid fusion approaches. For the
general and medium-specific labels of the PP problem, three votes fusion seems
to be a better choice than the weighted voting or consensus scheme, albeit not
significantly. Also, differences in ranking between one and three vote schemes
for the two problems suggest that the improvements through fusion is obtained
in a different manner: by exploiting complementarity in GFP, and consensus in
PP problem. In relative terms, improvements obtained by fusion approaches are
much more significant for the GFP problem, as are also the differences between
fusion schemes, as depicted in Figure 2.

5.1 Classifier diversity and performance of fusion approaches

The relationship between diversity and performance of different fusion approaches
is shown on Figure 3. For both problems, higher diversity seems to be clearly
related with higher performance, similarly for AUPRC and R@P measure. It
seems that diversity spreads to larger values for GFP than for PP problem.
Before making further inferences about the nature of the relationship between
performance of classifiers and diversity we need to look into basic characteristics



Table 3. Gene function prediction

GENERAL MEDIUM-SPECIF SPECIFIC

AUPRC RC@0.7PR AUPRC RC@0.7PR AUPRC RC@0.7PR
Early fusion 0.543 0.417 0.196 0.192 0.081 0.155

L
at

e
fu

si
on One vote 0.573 0.440 0.238 0.201 0.113 0.149

Two votes 0.453 0.335 0.176 0.170 0.103 0.147
Three votes 0.241 0.127 0.118 0.100 0.044 0.096
Consensus 0.571 0.447 0.252 0.227 0.131 0.169

Weighted voting 0.590 0.455 0.257 0.228 0.122 0.165

H
y
b
ri

d
fu

s. One vote 0.575 0.439 0.245 0.201 0.117 0.151
Two votes 0.561 0.434 0.251 0.216 0.131 0.175

Three votes 0.485 0.373 0.210 0.200 0.107 0.165
Consensus 0.582 0.449 0.275 0.233 0.153 0.187

Weighted voting 0.580 0.453 0.276 0.235 0.134 0.186

In
d
iv

id
u
al PP 0.136 0.048 0.057 0.065 0.007 0.065

EKM 0.529 0.392 0.144 0.163 0.030 0.102
CGN 0.123 0.046 0.045 0.062 0.008 0.075
TEP 0.083 0.026 0.018 0.044 0.004 0.026
BPS 0.411 0.264 0.052 0.089 0.023 0.104

Table 4. Phenotype prediction

GENERAL MEDIUM-SPECIF SPECIFIC

AUPRC RC@0.7PR AUPRC RC@0.7PR AUPRC RC@0.7PR
Early fusion 0.836 0.781 0.610 0.465 0.439 0.309

L
at

e
fu

si
on One vote 0.732 0.622 0.452 0.227 0.373 0.227

Two votes 0.796 0.710 0.562 0.413 0.434 0.312
Three votes 0.820 0.774 0.571 0.430 0.425 0.333
Consensus 0.799 0.726 0.551 0.383 0.406 0.265

Weighted voting 0.820 0.762 0.584 0.436 0.430 0.296

H
y
b
ri

d
fu

s. One vote 0.732 0.623 0.452 0.227 0.373 0.227
Two votes 0.802 0.711 0.581 0.439 0.440 0.312

Three votes 0.831 0.787 0.595 0.449 0.439 0.319
Consensus 0.808 0.736 0.566 0.399 0.416 0.279

Weighted voting 0.827 0.772 0.593 0.445 0.446 0.317

In
d
iv

id
u
al TM 0.791 0.715 0.575 0.428 0.388 0.262

AAC 0.679 0.540 0.339 0.153 0.270 0.126
PC 0.611 0.408 0.253 0.119 0.132 0.058

CGN 0.759 0.692 0.499 0.361 0.429 0.336
PP 0.781 0.696 0.504 0.347 0.414 0.342

TEP 0.752 0.684 0.418 0.240 0.259 0.177
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(b) Medium-specific 

(c) Specific 
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Critical distance = 0.857  

Critical distance = 0.858  

Critical distance = 0.853  

(e) Medium-specific 

(d) General 

Critical distance = 3.11 
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Fig. 2. Average ranks diagrams comparing the performance of fusion ap-
proaches over labels belonging to different levels of generality. LF stands for
late fusion and HF for hybrid fusion. The numbers on the axis represent ranks and
the best ranking approaches are at the leftmost side of the diagram. The approaches
that do not differ by less than the critical distance for a significance level of 0.05 are
connected with a line.



of the used diversity measure. Assuming independence between individual classi-
fier outputs, higher values of diversity can be expected for ensembles of medium
performing classifiers or ensembles with very diverse range of performances. If
we assume that we have homogeneous ensemble of classifiers with high recall
values, we can expect low diversity measures. The same is true if all classifiers
have low recall values since in that case low diversity is driven by high values of
N00 in Eq.(5). Main correlation trend between diversity and performance for the
GFP problem seems to be driven by ensembles of low performing - low diversity
classifiers on one hand and mixtures of ensembles with low and high performing
classifiers (range of diversity 0.3-0.6).

The same mixture of cases seems to be driving the correlation behind perfor-
mance measures and diversity in case of the PP data, with one notable difference,
the cases with low diversity and very high score. These cases together with the
rest of general labels exhibit no correlation between diversity and performance
scores.

5.2 Relationship between diversity and generality of labels

In principle, when dividing the label space, we assumed that more general labels
will be easier to learn and this holds on average for both problems. However, for
GFP problem in particular, diversity seems to play important role for general
labels as well. At the first glance there is a counter-intuitive result for the GFP
problem: the correlation of diversity and performance is somewhat larger for
general categories than for the specific ones. However, there is a considerable
number of specific categories that are practically not learnable (R@P=0) at
all, which reduces correlation over learnable specific categories. Low learnability
seems also to be the explanation for low scores of significant part of general
and medium specific GFP labels, which shows that available GFP feature sets
are still not fit enough for proper learning of significant part of Gene Ontology
graph.

To the contrast, for the PP problem there seems to be no significant correla-
tion between diversity and performance for general category of labels. However,
if we compare IC intervals of GFP and PP general category of labels, it can be
seen that PP general labels are much more frequent, and therefore also more
easily learnable. Overall fitness of feature sets for general PP labels is confirmed
through low diversity and very high performance scores for general PP labels.
Figure 4 shows increase of the performance scores of fusion approaches over the
baseline three votes approach, regarded in our experiment as a proxy for major-
ity voting. Majority voting is the approach that exploits consensus rather than
the complementarity of classifiers. On the other hand, weighted voting approach
exploits both complementarity and consensus of classifiers. Notable difference
between two problems is that improvement for GFP problem is on average signif-
icant over all label generality levels, while for the PP problem difference between
fusion approaches is practically negligible. Also, for the medium and specific la-
bels of the GFP problem, there is a consistent difference between early, late
and hybrid fusion with early fusion as the weakest and hybrid fusion as the
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Fig. 3. Diversity of individual classifiers is correlated with the predictive per-
formance of fusion approaches. Late and hybrid fusion are both based on weighted
voting approach. r stands for Pearson correlation coefficient, G for general labels, M
for medium specific and S for specific labels. IC stands for information content.
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Fig. 4. Differences between fusion approaches and three votes baseline. Late and hybrid
fusion results are those for Weighted voting approach.

strongest performer. The logical conclusion is that fusion approaches exploiting
complementarity are the best choice for difficult annotation problems, for which
individual classifiers perform well only locally. Such cases are characterized by
strong correlation between diversity and performance of fused ensembles.

6 Conclusions

This work revisits the problem of classifier fusion with intention to provide new
insight into relationship of classifier diversity and performance of classifier fusion
approaches. We have used simple fusion approaches that foster complementar-
ity between classifiers, and two performance measures well suited for discovery
setting of biological annotation. Although we have performed the analysis on
just two datasets, we believe that their complexity and characteristics provide



enough grounds to conclude that diversity of ensembles is indeed strongly related
to improved performance of fusion approaches exploiting complementarity. This
is the case when individual classifiers exhibit strong performances only locally
(i.e. only for a subset of labels). This conclusion slightly departs from the previ-
ous findings [5]. In our future efforts we plan to investigate relationship between
diversity and performance of fused ensembles in more detail, over more datasets,
using larger number of classifiers, and more complex fusion approaches.
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