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Abstract. Genetic algorithm is an evolutionary search 
technique that is becoming increasingly popular in 
solving practical problems like timetabling, scheduling, 
engineering design, and other optimization problems. In 
this paper we present a computer program implemented 
to perform basic experimentation with a simple genetic 
algorithm with intention to gain understanding of how 
genetic algorithms work. The program allows changing 
the algorithm parameters, and shows their effects in a 
graphical form including solution encoding and graphs 
of the best-so-far fitness. 
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1 Introduction 
“A genetic algorithm (GA) is a search technique used in 
computer science to find approximate solutions to 
optimization and search problems. They are a particular 
class of evolutionary algorithms that use techniques 
inspired by evolutionary biology such as inheritance, 
mutation, selection, and crossover (also called 
recombination).” [4].  
 GAs are used in practice for different purposes, e.g. 
for solving timetabling, scheduling, engineering design 
and other optimization problems. Implementation, 
though, depends on the particular problem that needs to 
be solved. In this work we do not go into the details of a 
specific implementation. Instead, we describe a 
visualization computer program built on the basic form 
of a genetic algorithm, known as simple genetic 
algorithm (SGA).  
 The idea of visualizing the algorithm is taken from 
[8], while the implementation follows the description of 
the SGA coded in Pascal [5]. In a later work the 
algorithm was improved and implemented in the C 
programming language [10]. Both sources were very 
useful in our work, although certain adjustments were 
needed to implement the SGA in C# [2, 7, 9]. 
 To facilitate the functioning of the SGA, a simple 
problem is used, i.e. a problem of a box with switches. 
There are ten switches on the box, and depending on 
which switches are on and off, the box produces a 
result. The target is to gain an optimal result by 
experimenting with turning the switches on and off, and 
in this case the optimal result is obtained when all 
switches are turned on. 

 To solve this problem using the SGA, we need to 
define the encoding of candidate solutions or their 
genetic representation, and a fitness function that is a 
measure of the solution quality. It is simple to encode 
the switching problem because the state of every switch 
can be represented with only two values, i.e. 0 when the 
switch is off, and 1 when the switch is on. A complete 
solution that includes the states of all ten switches can 
be encoded as a string of ten binary digits. 
 To calculate the fitness of a solution, we first need to 
decode the solution. Decoding is performed by 
summing powers of two as implied by the binary code. 
For example the decoded value of the solution 
0010001011 would be 27 + 23 + 21 + 20 = 128 + 8 + 2 + 
1 = 139. Accordingly, the weakest solution would have 
the value 0, and the best or optimal solution would be 
1023. 
 In our implementation we did not use such a 
straightforward implementation of a fitness function. 
Instead, the function  
 

ncoeffxxf )/(*100)(   (1) 
 
was used, where n could be set as a parameter of the 
program with a default value of 10, and the value of the 
coefficient (coeff) depends on the length of the solution. 
The coefficient is determined as follows: 
 

12 � mcoeff  (2) 
 
where m represents the length of the solutions. In the 
10-bit switching box problem coeff is 1023 and this 
number is used for the normalization purposes. The 
normalized value is then multiplied by 100, as we want 
to get fitness values ranging from 0 to 100, with 0 as the 
lowest and 100 as the highest fitness. 
 Solutions are evaluated in generations, and in our 
SGA implementation we chose generations of ten 
solutions. Solutions in the initial generation are 
generated randomly [6] bit by bit by flipping an 
unbiased coin, and in other generations are obtained by 
applying genetic operators, i.e. selection, crossover and 
mutation to the solutions of the last available 
generation. 
 Selection is an operation used for choosing the fittest 
solutions for reproduction [1, 3, 5]. From numerous 
methods of performing the selection in a genetic 
algorithm we implemented the so-called roulette-wheel 



 
selection which uses “a biased roulette wheel where 
each current string in the population has a roulette 
wheel slot sized in proportion to its fitness… Each time 
we require another offspring, a simple spin of the 
weighted roulette wheel yields the reproduction 
candidate.” [5]. 
 On the selected solutions the operations of crossover 
and mutation are performed. Crossover implies 
exchange of information between two solutions. The 
crossover point is chosen randomly [1, 3, 5]. If, for 
example, it is between the third and the fourth bit, then 
as a result we get two new solutions where the first 
three bits are copied from parent solutions and other bits 
are exchanged, i.e. the first child gets other bits from the 
second parent, and the second child gets other bits from 
the first parent. Mutation means that some randomly 
chosen bits are changed from 0 to 1 or from 1 to 0 [1, 3, 
5]. Probabilities of crossover and mutation are set as 
parameters of the program and are realized by flipping a 
biased coin.  
 

2 Visualization 
The purpose of the developed program is to graphically 
present the operation of the SGA and therefore facilitate 
its understanding. Two forms of graphical 
representation were implemented, i.e. the representation 
of solutions in the form of colored strings composed of 
zeros and ones, and representation of the best-so-far 
fitness in a graph (see Figure 1). 
 The first form of visualization presents two 
populations, the old one on which the genetic operations 
will be performed, and the new one that is a result of 
applying the genetic operations. Each individual 
solution in the old population is presented by different 
color. The solutions in the new population are colored in 
such a way that from the colors one can see which 
genetic operations were applied to them. For example, 
as a result of the selection, two solutions were chosen, 
the first and the sixth solution. The first solution in the 
old population is colored in red and the sixth 

Figure 1. The SGA visualization program supports two forms of graphical representation, i.e. representation of solutions using 
colored binary strings, and best-so-far fitness values shown in a graph. 
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solution is colored in yellow. The crossover point is 
between the third and the fourth bit of the solution. The 
result of applying genetic operations will be represented 
in the new population as two strings, with the first three 
bits of the first string colored in red (showing that they 
are copied from the first parent) and other bits colored 
in yellow (copied from the second parent). Likewise, in 
the case of the second child, the first three bits will be 
colored in yellow and others in red. If somewhere in the 
process mutation has happened, then it is presented by 
coloring the background of the bit in blue. 
 The second approach to visualization is representing 
best-so-far fitness in the form of a graph. The best-so-
far fitness is the highest fitness obtained in evaluating 
the solutions during the course of the algorithm run. On 
the x-axis, the number of solution evaluations is 
presented, and on the y-axis the fitness. Every run is 
presented by a line of different color, so that the results 
of different runs can be compared. In addition, the mean 
value of the best-so-far fitness over all runs can be 
calculated and shown in the graph as a thick red line 
(see Figure 1). Because of the clarity of the graphical 
representation, the number of runs traced in graphical 
representation is limited to ten. On the other hand, the 
feature of automatic graph shrinking makes it possible 
to represent long runs as well. 
 Visualization is accompanied by statistics showing 
the following characteristics of the algorithm run: 

x Generation – Shows the number of generations in 
the current run. 

x Minimum fitness – Shows the minimum fitness of 
the new population. 

x Average fitness – Shows the average fitness of the 
new population. 

x Maximum fitness – Shows the maximum fitness of 
the new population. 

x Best generation – Shows in which generation the 
best fitness was achieved in the current run. 

x Best fitness – Shows the best fitness achieved in the 
current run. 

 
3  Program Functions 
All program functions are placed on one screen. To 
work with the SGA we need to set some inputs or the 
parameters of the run. They are as follows: 

x Stop criterion – We need to set some target when 
applying the SGA in problem solving. The target 
can be achieving the maximum fitness, i.e. optimal 
solution, or we can conduct a predefined number of 
evaluations (in the range from 1 to 10000) no matter 
of the achieved fitness value. As a default value of 
this parameter, the maximum fitness is chosen. 

x Crossover probability – Defines the probability that 
two randomly selected solutions will undergo 
crossover. The default value is 0.6. 

x Mutation probability – Defines the probability that a 
bit in the solution string will be mutated. The 
default value is 0.03. 

x Random seed – A number used to calculate the 
starting value for the random number sequence. The 
Random seed can be a value between 0 and 100, 
and the default value is 0, which means that the 
starting value for the random number sequence will 
also be chosen at random. 

x n – This integer parameter represents the exponent 
in the fitness function as defined by the Equation 
(1). Choosing higher values makes the search 
problem harder for the SGA (see Figure 2) and 
results in more solution evaluations needed for 
finding the solution. The value of n can be set 
between 1 and 1000. The default value is 10. 

x Default Values – This button is used to set the 
default values of all program parameters.  
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Figure 2. Effect of the exponent n on the fitness function. 
Higher values make it more difficult for the SGA to find the 
maximum. 

 
 After setting the parameters we can choose the 
action by clicking a button on the toolbar placed on the 
top of the screen. The buttons are as follows: 

x Generation – By clicking on this button we evolve 
solutions generation by generation. This option 
allows for detailed monitoring of the results. It is 
based on the algorithm parameters set in the 
beginning of the run, what means that changing 
parameters before showing the next generation, 
except for the initial population, would have no 
effects. Similarly, changing the stop criterion 
parameter does not have any effect. 

x Start – Starting the process of evolution. Solutions 
are evolved until the stop criterion is satisfied or the 
run is stopped by clicking on the Stop Run button. 

x Reset Run – Used for preparing the program for a 
new run by resetting the populations and statistics. 
The primary function of this option is to reset the 
run conduced generation by generation.  



 
x Reset Graph – We use this option when we want to 

show a new set of runs on the graph. As a result of 
pressing this button, graphical representations of old 
runs in the graph are deleted. 

x Mean Value – Shows the mean value of the best-so-
far fitness for all runs presented in the graph. It is 
available after conducting two or more runs. The 
result of clicking on this button can be seen in 
Figure 1 as a thick line. 

x Stop Run – Option available during the SGA run. 
By clicking on this button we stop the current run. 

x Close – Used for closing the program. 
 

On the toolbar, besides the buttons, there is also a drop-
down box that enables us to choose between black and 
white color schemes. 
 

4  Example Situations 
In addition to demonstrating the core functionalities of 
the SGA, such as genetic operations on candidate 
solutions, we can also show the effects of parameter 
changes on the algorithm performance. For example, we 
can set mutation probability to 0, meaning that there 
would be no mutations. As a result, after some initial 
progress the SGA will get stuck at a certain fitness value 
and unable to improve further (see Figure 3a). 
 Another illustrative situation is obtained by setting 
the fitness function exponent n to a high value which 
makes it harder for the SGA to find the optimum 
(Figure 3b). 
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Figure 3. SGA performance: a) at zero mutation probability, b) 
with the fitness function exponent n = 1 

5 Conclusion 
Visualization is a powerful tool that can be used for 
facilitating explanation of functionality of the SGA. In 
this paper we presented a computer program that 
implements two forms of the SGA visualization. One 
form uses colored strings to represent genetic operations 
applied to candidate solutions. The other form 
represents progress of the SGA by showing a graph of 
the best-so-far fitness. In this graph, multiple runs can 
be shown, and after conducting two or more runs, the 
mean value of their best-so-far fitness values can be 
calculated and drawn in the graph. 
 By setting different values of the algorithm 
parameters, e.g. probability of crossover and mutation, 
random seed etc., we change the behavior of the SGA, 
and the graphical representation of the algorithm 
performance is an ideal way of showing the influence of 
parameter changes. 
 The program was created for educational purposes 
and will be used in the beginner courses on evolutionary 
computation to demonstrate how the SGA works. 
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