
Visualization of a Simple Genetic Algorithm for Pedagogical
Purposes

Vedrana Vidulin1, Bogdan Filipiþ2

1,2 Jožef Stefan Institute, Department of Intelligent Systems, Jamova 39, SI-1000 Ljubljana, Slovenia
E-mail: vedrana.vidulin@ijs.si, bogdan.filipic@ijs.si

Abstract. Genetic algorithm is an evolutionary search
technique that is becoming increasingly popular in
solving practical problems like timetabling, scheduling,
engineering design, and other optimization problems. In
this paper we present a computer program implemented
to perform basic experimentation with a simple genetic
algorithm with intention to gain understanding of how
genetic algorithms work. The program allows changing
the algorithm parameters, and shows their effects in a
graphical form including solution encoding and graphs
of the best-so-far fitness.

Key words: evolutionary computation, optimization,
simple genetic algorithm, visualization, best-so-far
fitness

1 Introduction
“A genetic algorithm (GA) is a search technique used in
computer science to find approximate solutions to
optimization and search problems. They are a particular
class of evolutionary algorithms that use techniques
inspired by evolutionary biology such as inheritance,
mutation, selection, and crossover (also called
recombination).” [4].
 GAs are used in practice for different purposes, e.g.
for solving timetabling, scheduling, engineering design
and other optimization problems. Implementation,
though, depends on the particular problem that needs to
be solved. In this work we do not go into the details of a
specific implementation. Instead, we describe a
visualization computer program built on the basic form
of a genetic algorithm, known as simple genetic
algorithm (SGA).
 The idea of visualizing the algorithm is taken from
[8], while the implementation follows the description of
the SGA coded in Pascal [5]. In a later work the
algorithm was improved and implemented in the C
programming language [10]. Both sources were very
useful in our work, although certain adjustments were
needed to implement the SGA in C# [2, 7, 9].
 To facilitate the functioning of the SGA, a simple
problem is used, i.e. a problem of a box with switches.
There are ten switches on the box, and depending on
which switches are on and off, the box produces a
result. The target is to gain an optimal result by
experimenting with turning the switches on and off, and
in this case the optimal result is obtained when all
switches are turned on.

 To solve this problem using the SGA, we need to
define the encoding of candidate solutions or their
genetic representation, and a fitness function that is a
measure of the solution quality. It is simple to encode
the switching problem because the state of every switch
can be represented with only two values, i.e. 0 when the
switch is off, and 1 when the switch is on. A complete
solution that includes the states of all ten switches can
be encoded as a string of ten binary digits.
 To calculate the fitness of a solution, we first need to
decode the solution. Decoding is performed by
summing powers of two as implied by the binary code.
For example the decoded value of the solution
0010001011 would be 27 + 23 + 21 + 20 = 128 + 8 + 2 +
1 = 139. Accordingly, the weakest solution would have
the value 0, and the best or optimal solution would be
1023.
 In our implementation we did not use such a
straightforward implementation of a fitness function.
Instead, the function

ncoeffxxf)/(*100)((1)

was used, where n could be set as a parameter of the
program with a default value of 10, and the value of the
coefficient (coeff) depends on the length of the solution.
The coefficient is determined as follows:

12 � mcoeff (2)

where m represents the length of the solutions. In the
10-bit switching box problem coeff is 1023 and this
number is used for the normalization purposes. The
normalized value is then multiplied by 100, as we want
to get fitness values ranging from 0 to 100, with 0 as the
lowest and 100 as the highest fitness.
 Solutions are evaluated in generations, and in our
SGA implementation we chose generations of ten
solutions. Solutions in the initial generation are
generated randomly [6] bit by bit by flipping an
unbiased coin, and in other generations are obtained by
applying genetic operators, i.e. selection, crossover and
mutation to the solutions of the last available
generation.
 Selection is an operation used for choosing the fittest
solutions for reproduction [1, 3, 5]. From numerous
methods of performing the selection in a genetic
algorithm we implemented the so-called roulette-wheel

selection which uses “a biased roulette wheel where
each current string in the population has a roulette
wheel slot sized in proportion to its fitness… Each time
we require another offspring, a simple spin of the
weighted roulette wheel yields the reproduction
candidate.” [5].
 On the selected solutions the operations of crossover
and mutation are performed. Crossover implies
exchange of information between two solutions. The
crossover point is chosen randomly [1, 3, 5]. If, for
example, it is between the third and the fourth bit, then
as a result we get two new solutions where the first
three bits are copied from parent solutions and other bits
are exchanged, i.e. the first child gets other bits from the
second parent, and the second child gets other bits from
the first parent. Mutation means that some randomly
chosen bits are changed from 0 to 1 or from 1 to 0 [1, 3,
5]. Probabilities of crossover and mutation are set as
parameters of the program and are realized by flipping a
biased coin.

2 Visualization
The purpose of the developed program is to graphically
present the operation of the SGA and therefore facilitate
its understanding. Two forms of graphical
representation were implemented, i.e. the representation
of solutions in the form of colored strings composed of
zeros and ones, and representation of the best-so-far
fitness in a graph (see Figure 1).
 The first form of visualization presents two
populations, the old one on which the genetic operations
will be performed, and the new one that is a result of
applying the genetic operations. Each individual
solution in the old population is presented by different
color. The solutions in the new population are colored in
such a way that from the colors one can see which
genetic operations were applied to them. For example,
as a result of the selection, two solutions were chosen,
the first and the sixth solution. The first solution in the
old population is colored in red and the sixth

Figure 1. The SGA visualization program supports two forms of graphical representation, i.e. representation of solutions using
colored binary strings, and best-so-far fitness values shown in a graph.

0

20
 n = 50

40

60

80

100

0 200 400 600 800 1000x

f(x
) n = 1

solution is colored in yellow. The crossover point is
between the third and the fourth bit of the solution. The
result of applying genetic operations will be represented
in the new population as two strings, with the first three
bits of the first string colored in red (showing that they
are copied from the first parent) and other bits colored
in yellow (copied from the second parent). Likewise, in
the case of the second child, the first three bits will be
colored in yellow and others in red. If somewhere in the
process mutation has happened, then it is presented by
coloring the background of the bit in blue.
 The second approach to visualization is representing
best-so-far fitness in the form of a graph. The best-so-
far fitness is the highest fitness obtained in evaluating
the solutions during the course of the algorithm run. On
the x-axis, the number of solution evaluations is
presented, and on the y-axis the fitness. Every run is
presented by a line of different color, so that the results
of different runs can be compared. In addition, the mean
value of the best-so-far fitness over all runs can be
calculated and shown in the graph as a thick red line
(see Figure 1). Because of the clarity of the graphical
representation, the number of runs traced in graphical
representation is limited to ten. On the other hand, the
feature of automatic graph shrinking makes it possible
to represent long runs as well.
 Visualization is accompanied by statistics showing
the following characteristics of the algorithm run:

x Generation – Shows the number of generations in
the current run.

x Minimum fitness – Shows the minimum fitness of
the new population.

x Average fitness – Shows the average fitness of the
new population.

x Maximum fitness – Shows the maximum fitness of
the new population.

x Best generation – Shows in which generation the
best fitness was achieved in the current run.

x Best fitness – Shows the best fitness achieved in the
current run.

3 Program Functions
All program functions are placed on one screen. To
work with the SGA we need to set some inputs or the
parameters of the run. They are as follows:

x Stop criterion – We need to set some target when
applying the SGA in problem solving. The target
can be achieving the maximum fitness, i.e. optimal
solution, or we can conduct a predefined number of
evaluations (in the range from 1 to 10000) no matter
of the achieved fitness value. As a default value of
this parameter, the maximum fitness is chosen.

x Crossover probability – Defines the probability that
two randomly selected solutions will undergo
crossover. The default value is 0.6.

x Mutation probability – Defines the probability that a
bit in the solution string will be mutated. The
default value is 0.03.

x Random seed – A number used to calculate the
starting value for the random number sequence. The
Random seed can be a value between 0 and 100,
and the default value is 0, which means that the
starting value for the random number sequence will
also be chosen at random.

x n – This integer parameter represents the exponent
in the fitness function as defined by the Equation
(1). Choosing higher values makes the search
problem harder for the SGA (see Figure 2) and
results in more solution evaluations needed for
finding the solution. The value of n can be set
between 1 and 1000. The default value is 10.

x Default Values – This button is used to set the
default values of all program parameters.

 n = 5

Figure 2. Effect of the exponent n on the fitness function.
Higher values make it more difficult for the SGA to find the
maximum.

 After setting the parameters we can choose the
action by clicking a button on the toolbar placed on the
top of the screen. The buttons are as follows:

x Generation – By clicking on this button we evolve
solutions generation by generation. This option
allows for detailed monitoring of the results. It is
based on the algorithm parameters set in the
beginning of the run, what means that changing
parameters before showing the next generation,
except for the initial population, would have no
effects. Similarly, changing the stop criterion
parameter does not have any effect.

x Start – Starting the process of evolution. Solutions
are evolved until the stop criterion is satisfied or the
run is stopped by clicking on the Stop Run button.

x Reset Run – Used for preparing the program for a
new run by resetting the populations and statistics.
The primary function of this option is to reset the
run conduced generation by generation.

x Reset Graph – We use this option when we want to

show a new set of runs on the graph. As a result of
pressing this button, graphical representations of old
runs in the graph are deleted.

x Mean Value – Shows the mean value of the best-so-
far fitness for all runs presented in the graph. It is
available after conducting two or more runs. The
result of clicking on this button can be seen in
Figure 1 as a thick line.

x Stop Run – Option available during the SGA run.
By clicking on this button we stop the current run.

x Close – Used for closing the program.

On the toolbar, besides the buttons, there is also a drop-
down box that enables us to choose between black and
white color schemes.

4 Example Situations
In addition to demonstrating the core functionalities of
the SGA, such as genetic operations on candidate
solutions, we can also show the effects of parameter
changes on the algorithm performance. For example, we
can set mutation probability to 0, meaning that there
would be no mutations. As a result, after some initial
progress the SGA will get stuck at a certain fitness value
and unable to improve further (see Figure 3a).
 Another illustrative situation is obtained by setting
the fitness function exponent n to a high value which
makes it harder for the SGA to find the optimum
(Figure 3b).

a)

b)

Figure 3. SGA performance: a) at zero mutation probability, b)
with the fitness function exponent n = 1

5 Conclusion
Visualization is a powerful tool that can be used for
facilitating explanation of functionality of the SGA. In
this paper we presented a computer program that
implements two forms of the SGA visualization. One
form uses colored strings to represent genetic operations
applied to candidate solutions. The other form
represents progress of the SGA by showing a graph of
the best-so-far fitness. In this graph, multiple runs can
be shown, and after conducting two or more runs, the
mean value of their best-so-far fitness values can be
calculated and drawn in the graph.
 By setting different values of the algorithm
parameters, e.g. probability of crossover and mutation,
random seed etc., we change the behavior of the SGA,
and the graphical representation of the algorithm
performance is an ideal way of showing the influence of
parameter changes.
 The program was created for educational purposes
and will be used in the beginner courses on evolutionary
computation to demonstrate how the SGA works.

6 References
[1] M. Berthold, D. J. Hand, Intelligent Data Analysis,

Chapter 10: Stochastic Search Methods, p. 351-
401, Springer, 2003

[2] E. Brown, Windows Forms Programming with C#,
Manning Publications, 2002

[3] A. E. Eiben, J. E. Smith, Introduction to Evo-
lutionary Computing, Chapter 2: What is an
Evolutionary Algorithm, p. 13-35, Springer, 2003

[4] Genetic Algorithm – Wikipedia, 2006,
 http://en.wikipedia.org/wiki/Genetic_algorithm
[5] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Chapter 1: A
Gentle Introduction to Genetic Algorithms, p. 1-25,
Chapter 3: Computer Implementation of a Genetic
Algorithm, p. 59-88, Addison-Wesley, 1989

[6] R. L. Haupt, S. E. Haupt, Practical Genetic
Algorithms, 2nd Edition, Chapter 2: The Binary
Genetic Algorithm, p. 25-48, Wiley-Interscience,
2004

[7] J. Liberty, Programming C#, O'Reilly Media, 2005
[8] M. Obitko, P. Slavik, Visualization of genetic

algorithms in a learning environment, Spring
Conference on Computer Graphics SCCG'99,
Comenius University, Bratislava, p. 101-106, 1999

[9] S. Robinson, C. Nagel, K. Watson, J. Glynn, M.
Skinner, B. Evjen, Professional C#, 3rd Edition,
John Wiley & Sons, 2004

 [10] R. E. Smith, D. E. Goldberg, J. A. Earickson, SGA-
C: A C-language Implementation of a Simple
Genetic Algorithm, The Clearinghouse for Genetic
Algorithms, Technical Report No. 91002,
University of Alabama, Department of Engineering
Mechanics, Tuscaloosa 1994

